ÌâÄ¿ÄÚÈÝ
ÎÒÃÇÖªµÀ¼Ù·ÖÊý¿ÉÒÔ»¯Îª´ø·ÖÊý£®ÀýÈ磺
=2+
=2
£®ÔÚ·ÖʽÖУ¬¶ÔÓÚÖ»º¬ÓÐÒ»¸ö×ÖĸµÄ·Öʽ£¬µ±·Ö×ӵĴÎÊý´óÓÚ»òµÈÓÚ·ÖĸµÄ´ÎÊýʱ£¬ÎÒÃdzÆ֮Ϊ¡°¼Ù·Öʽ¡±£»µ±·Ö×ӵĴÎÊýСÓÚ·ÖĸµÄ´ÎÊýʱ£¬ÎÒÃdzÆ֮Ϊ¡°Õæ·Öʽ¡±£®ÀýÈ磺
£¬
ÕâÑùµÄ·Öʽ¾ÍÊǼٷÖʽ£»
£¬
ÕâÑùµÄ·Öʽ¾ÍÊÇÕæ·Öʽ£®ÀàËƵģ¬¼Ù·ÖʽҲ¿ÉÒÔ»¯Îª´ø·Öʽ£¨¼´ÕûʽÓëÕæ·ÖʽºÍµÄÐÎʽ£©£®
ÀýÈ磺
=
=1-
£»
=
=
=x+1+
£®
£¨1£©½«·Öʽ
»¯Îª´ø·Öʽ£»
£¨2£©Èô·Öʽ
µÄֵΪÕûÊý£¬ÇóxµÄÕûÊýÖµ£®
8 |
3 |
2 |
3 |
2 |
3 |
x-1 |
x+1 |
x2 |
x-1 |
3 |
x+1 |
2x |
x2+1 |
ÀýÈ磺
x-1 |
x+1 |
(x+1)-2 |
x+1 |
2 |
x+1 |
x2 |
x-1 |
x2-1+1 |
x-1 |
(x+1)(x-1)+1 |
x-1 |
1 |
x-1 |
£¨1£©½«·Öʽ
x-1 |
x+2 |
£¨2£©Èô·Öʽ
2x-1 |
x+1 |
·ÖÎö£º£¨1£©¸ù¾ÝÌâÖеÄÔĶÁ²ÄÁϽ«Ôʽ»¯Îª´ø·Öʽ¼´¿É£»
£¨2£©¸ù¾ÝÌâÖеÄÔĶÁ²ÄÁϽ«Ôʽ»¯Îª´ø·Öʽ£¬¸ù¾Ý½á¹ûΪÕûÊý£¬È·¶¨³öxµÄÕûÊýÖµ¼´¿É£®
£¨2£©¸ù¾ÝÌâÖеÄÔĶÁ²ÄÁϽ«Ôʽ»¯Îª´ø·Öʽ£¬¸ù¾Ý½á¹ûΪÕûÊý£¬È·¶¨³öxµÄÕûÊýÖµ¼´¿É£®
½â´ð£º½â£º£¨1£©
=
=1-
£»
£¨2£©
=
=2-
£¬
µ±
ΪÕûÊýʱ£¬
ҲΪÕûÊý£¬
¡àx+1¿ÉÈ¡µÃµÄÕûÊýֵΪ¡À1£¬¡À3£¬
¡àxµÄ¿ÉÄÜÕûÊýֵΪ0£¬-2£¬2£¬-4£®
x-1 |
x+2 |
=
(x+2)-3 |
x+2 |
=1-
3 |
x+2 |
£¨2£©
2x-1 |
x+1 |
2(x+1)-3 |
x+1 |
3 |
x+1 |
µ±
2x-1 |
x+1 |
3 |
x+1 |
¡àx+1¿ÉÈ¡µÃµÄÕûÊýֵΪ¡À1£¬¡À3£¬
¡àxµÄ¿ÉÄÜÕûÊýֵΪ0£¬-2£¬2£¬-4£®
µãÆÀ£º´ËÌ⿼²éÁË·ÖʽµÄ»ìºÏÔËË㣬ÊìÁ·ÕÆÎÕÔËËã·¨ÔòÊǽⱾÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿