ÌâÄ¿ÄÚÈÝ
ÎÒÃÇÖªµÀ£¬¼Ù·ÖÊý¿ÉÒÔ»¯Îª´ø·ÖÊý£®ÀýÈ磺
=2+
=2
£®ÔÚ·ÖʽÖУ¬¶ÔÓÚÖ»º¬ÓÐÒ»¸ö×ÖĸµÄ·Öʽ£¬µ±·Ö×ӵĴÎÊý´óÓÚ»òµÈÓÚ·ÖĸµÄ´ÎÊýʱ£¬ÎÒÃdzÆ֮Ϊ¡°¼Ù·Öʽ¡±£»µ±·Ö×ӵĴÎÊýСÓÚ·ÖĸµÄ´ÎÊýʱ£¬ÎÒÃdzÆ֮Ϊ¡°Õæ·Öʽ¡±£®ÀýÈ磺
£¬
ÕâÑùµÄ·Öʽ¾ÍÊǼٷÖʽ£»
£¬
ÕâÑùµÄ·Öʽ¾ÍÊÇÕæ·Öʽ£®ÀàËƵģ¬¼Ù·ÖʽҲ¿ÉÒÔ»¯Îª´ø·Öʽ£¨¼´£ºÕûʽÓëÕæ·ÖʽºÍµÄÐÎʽ£©£®
ÀýÈ磺
=
=1-
£»
=
=
=x+1+
£®
£¨1£©½«·Öʽ
»¯Îª´ø·Öʽ£»
£¨2£©Èô·Öʽ
µÄֵΪÕûÊý£¬ÇóxµÄÕûÊýÖµ£»
£¨3£©Çóº¯Êýy=
ͼÏóÉÏËùÓкá×Ý×ø±ê¾ùΪÕûÊýµÄµãµÄ×ø±ê£®
8 |
3 |
2 |
3 |
2 |
3 |
x-1 |
x+1 |
x2 |
x-1 |
3 |
x+1 |
2x |
x2+1 |
ÀýÈ磺
x-1 |
x+1 |
(x+1)-2 |
x+1 |
2 |
x+1 |
x2 |
x-1 |
x2-1+1 |
x-1 |
(x+1)(x-1)+1 |
x-1 |
1 |
x-1 |
£¨1£©½«·Öʽ
x-1 |
x+2 |
£¨2£©Èô·Öʽ
2x-1 |
x+1 |
£¨3£©Çóº¯Êýy=
2x2-1 |
x+1 |
·ÖÎö£º£¨1£©·Öʽ·Ö×Óx-1±äÐÎΪx+2-3£¬ÀûÓÃͬ·Öĸ·Öʽ¼õ·¨ÄæÔËËã·¨Ôò±äÐμ´¿ÉµÃµ½½á¹û£»
£¨2£©½«·Öʽ·Ö×Ó2x-1±äÐÎΪ2£¨x+1£©-3£¬ÀûÓÃͬ·Öĸ·ÖʽµÄ¼õ·¨ÄæÔËËã·¨Ôò±äÐκó£¬ÓÉ·ÖʽµÄֵΪÕûÊý£¬¼´¿ÉÇó³öx¿ÉÄܵÄÖµ£»
£¨3£©½«º¯Êý½âÎöʽ·Ö×Ó±äÐκó£¬ÀûÓÃͬ·Öĸ·ÖʽµÄ¼Ó·¨ÄæÔËËã·¨Ôò±äÐΣ¬¸ù¾ÝxÓëyΪÕûÊý£¬µÃ³öxÓëyµÄÖµ£¬¼´¿ÉÈ·¶¨³öËùÇóµÄ×ø±ê£®
£¨2£©½«·Öʽ·Ö×Ó2x-1±äÐÎΪ2£¨x+1£©-3£¬ÀûÓÃͬ·Öĸ·ÖʽµÄ¼õ·¨ÄæÔËËã·¨Ôò±äÐκó£¬ÓÉ·ÖʽµÄֵΪÕûÊý£¬¼´¿ÉÇó³öx¿ÉÄܵÄÖµ£»
£¨3£©½«º¯Êý½âÎöʽ·Ö×Ó±äÐκó£¬ÀûÓÃͬ·Öĸ·ÖʽµÄ¼Ó·¨ÄæÔËËã·¨Ôò±äÐΣ¬¸ù¾ÝxÓëyΪÕûÊý£¬µÃ³öxÓëyµÄÖµ£¬¼´¿ÉÈ·¶¨³öËùÇóµÄ×ø±ê£®
½â´ð£º½â£º£¨1£©
=
=1-
£»
£¨2£©
=
=2-
£¬
¡ßµ±
ΪÕûÊýʱ£¬
ҲΪÕûÊý£¬
¡àx+1¿ÉÈ¡µÃµÄÕûÊýֵΪ¡À1¡¢¡À3£¬
¡àxµÄ¿ÉÄÜÕûÊýֵΪ0£¬-2£¬2£¬-4£»
£¨3£©y=
=
=2£¨x-1£©+
£¬
µ±x£¬y¾ùΪÕûÊýʱ£¬±ØÓÐx+1=¡À1£¬
½âµÃx=0»ò-2£¬
ÔòÏàÓ¦µÄyÖµ·Ö±ðΪ-1»ò-7£¬
¹ÊËùÇóµÄ×ø±êΪ£¨0£¬-1£©»ò£¨-2£¬-7£©£®
x-1 |
x+2 |
(x+2)-3 |
x+2 |
3 |
x+2 |
£¨2£©
2x-1 |
x+1 |
2(x+1)-3 |
x+1 |
3 |
x+1 |
¡ßµ±
2x-1 |
x+1 |
3 |
x+1 |
¡àx+1¿ÉÈ¡µÃµÄÕûÊýֵΪ¡À1¡¢¡À3£¬
¡àxµÄ¿ÉÄÜÕûÊýֵΪ0£¬-2£¬2£¬-4£»
£¨3£©y=
2x2-1 |
x+1 |
2(x2-1)+1 |
x+1 |
1 |
x+1 |
µ±x£¬y¾ùΪÕûÊýʱ£¬±ØÓÐx+1=¡À1£¬
½âµÃx=0»ò-2£¬
ÔòÏàÓ¦µÄyÖµ·Ö±ðΪ-1»ò-7£¬
¹ÊËùÇóµÄ×ø±êΪ£¨0£¬-1£©»ò£¨-2£¬-7£©£®
µãÆÀ£º´ËÌ⿼²éÁË·ÖʽµÄ»ìºÏÔËË㣬·ÖʽµÄÖµ£¬ÒÔ¼°·´±ÈÀýͼÏóÉϵãµÄ×ø±êÌØÕ÷£¬·ÖʽµÄ¼Ó¼õÔËËã¹Ø¼üÊÇͨ·Ö£¬Í¨·ÖµÄ¹Ø¼üÊÇÕÒ×î¼ò¹«·Öĸ£»·ÖʽµÄ³Ë³ýÔËËã¹Ø¼üÊÇÔ¼·Ö£¬Ô¼·ÖµÄ¹Ø¼üÊÇÕÒ¹«Òòʽ£¬Ô¼·Öʱ£¬·ÖʽµÄ·Ö×Ó·Öĸ³öÏÖ¶àÏîʽ£¬Ó¦½«¶àÏîʽ·Ö½âÒòʽºóÔÙÔ¼·Ö£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿