题目内容
【题目】(2016山东省泰安市第17题)如图,△ABC内接于⊙O,AB是⊙O的直径,∠B=30°,CE平分∠ACB交⊙O于E,交AB于点D,连接AE,则S△ADE:S△CDB的值等于( )
A.1: B.1: C.1:2 D.2:3
【答案】D
【解析】
试题分析:由AB是⊙O的直径,得到∠ACB=90°,根据已知条件得到,根据三角形的角平分线定理得到,求出AD=AB,BD=AB,过C作CE⊥AB于E,连接OE,由CE平分∠ACB交⊙O于E,得到OE⊥AB,求出OE=AB,CE=AB,根据三角形的面积公式即可得到结论.
∵AB是⊙O的直径, ∴∠ACB=90°,∵∠B=30°,∴,
∵CE平分∠ACB交⊙O于E,∴,∴AD=AB,BD=AB,
过C作CE⊥AB于E,连接OE,∵CE平分∠ACB交⊙O于E,∴=,
∴OE⊥AB,∴OE=AB,CE=AB,
∴S△ADE:S△CDB=(AD`OE):(BD`CE)=(×AB·AB):(×AB·AB)=2:3.
练习册系列答案
相关题目