题目内容
【题目】如图,已知一次函数y=2x+2的图象与y轴交于点B,与反比例函数y=的图象的一个交点为A(1,m),过点B作AB的垂线BD,与反比例函数y=(x>0)的图象交于点D(n,﹣2).
(1)k1和k2的值分别是多少?
(2)直线AB,BD分别交x轴于点C,E,若F是y轴上一点,且满足△BDF∽△ACE,求点F的坐标.
【答案】(1)4,-16;(2)点F的坐标为(0,﹣8).
【解析】(1)将A坐标代入一次函数解析式中求出m的值,确定出A的坐标,将A坐标代入反比例函数y=中即可求出k1的值;过A作AM垂直于y轴,过D作DN垂直于y轴,可得出一对直角相等,再由AC垂直于BD,利用同角的余角相等得到一对角相等,利用两对对应角相等的两三角形相似得到△ABM与△BDN相似,由相似得比例,求出DN的长,确定出D的坐标,代入反比例函数y=中即可求出k2的值;
(2)在y轴上存在一个点F,使得△BDF∽△ACE,此时F(0,-8),理由为:由y=2x+2求出C坐标,由OB=ON=2,DN=8,可得出OE为△BDN的中位线,求出OE的长,进而利用勾股定理求出AE,CE,AC,BD的长,以及∠EBO=∠ACE=∠EAC,若△BDF∽△ACE,得到比例式,求出BF的长,即可确定出此时F的坐标。
(1)∵点A(1,m)在一次函数y=2x+2的图象上,∴m=2+2=4,
∵点A(1,4)在反比例函数y=的图象上,∴k1=1×4=4;
∵BD⊥AB,∴∠BCE+∠BEC=90°,∵∠OCB+∠OBC=90°,∴∠BEC=∠OBC,
∴△BEC∽△OBC,∴.
∵已知一次函数y=2x+2的图象与y轴交于点B,与x轴交于点C,
∴B(0,2),C(﹣1,0),∴BC==,OB=2,OC=1,∴CE==5,
∴E(4,0).设直线BD的解析式为y=kx+b,则有,解得:,
∴直线BD的解析式为y=﹣x+2.∵点D(n,﹣2)在直线BD上,
∴﹣2=﹣n+2,解得:n=8,∵点D(8,﹣2)在反比例函数y=(x>0)的图象上,
∴k2=8×(﹣2)=﹣16.
(2)∵A(1,4),C(﹣1,0),E(4,0),∴CE=4﹣(﹣1)=5,AE==5,
AC==2,∴∠EAC=∠ECA.
∵∠EBO+∠CBO=90°,∠CBO+∠BCO=90°,∴∠EBO=∠BCO=∠EAC=∠DBF,
∴点F在点B的下方.设点F(0,t),B(0,2),D(8,﹣2),
∴BF=2﹣t,BD==4.∵△BDF∽△ACE,∴,
∴BF=2﹣t==10,解得:t=﹣8.
∴当F是y轴上一点,且满足△BDF∽△ACE时,点F的坐标为(0,﹣8).