题目内容
【题目】如图:E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足为C,D。
求证:(1)OC=OD,(2)DF=CF。
【答案】(1)证明见解析;(2)证明见解析
【解析】试题分析:(1)首先根据角平分线的性质可得EC=DE,∠ECO=∠EDO=90°,然后证明Rt△COE≌Rt△DOE可得CO=DO;(2)证明COF≌△DOF可根据全等三角形的性质可得FC=FD.
试题解析:(1)∵E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,
∴EC=DE,∠ECO=∠EDO=90°,
在Rt△COE和Rt△DOE中,
,
∴Rt△COE≌Rt△DOE(HL),
∴CO=DO;
(2)∵EO平分∠AOB,
∴∠AOE=∠BOE,
在△COF和△DOF中,
,
∴△COF≌△DOF(SAS),
∴FC=FD.
练习册系列答案
相关题目