题目内容
【题目】已知圆锥的母线长5,底面半径为3,则圆锥的侧面积为___________
【答案】15π
【解析】试题分析:圆锥的侧面积=2π×3×5÷2=15π.
【题目】已知任意三角形的三边长,如何求三角形面积?
古希腊的几何学家海伦解决了这个问题,在他的著作《度量论》一书中给出了计算公式﹣﹣海伦公式S=(其中a,b,c是三角形的三边长,p=,S为三角形的面积),并给出了证明
例如:在△ABC中,a=3,b=4,c=5,那么它的面积可以这样计算:
∵a=3,b=4,c=5
∴p==6
∴S===6
事实上,对于已知三角形的三边长求三角形面积的问题,还可用我国南宋时期数学家秦九韶提出的秦九韶公式等方法解决.
如图,在△ABC中,BC=5,AC=6,AB=9
(1)用海伦公式求△ABC的面积;
(2)求△ABC的内切圆半径r.
【题目】下列说法正确的是 ( )
A. 零表示什么也没有
B. 一场比赛赢4个球得+4分, -3分表示输了3个球
C. 7没有符号
D. 零既不是正数,也不是负数
【题目】英国曼彻斯特大学的两位科学家因为成功地从石墨中分离出石墨烯,荣获了诺贝尔物理学奖,石墨烯目前是世界上最薄也是最坚硬的纳米材料,同时还是导电性最好的材料,其原理厚度仅0.00000000034米,将0.00000000034这个数用科学记数法表示为 .
【题目】在一个不透明的塑料袋中装有红色、白色球共40个,除颜色外其它都相同,小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中红色球可能 ( )
A. 4个 B. 6个 C. 34个 D. 36个
【题目】如图,在平面直角坐标系中,A (16,0)、C (0,8),四边形OABC是矩形,D、E分别是OA、BC边上的点,沿着DE折叠矩形,点A恰好落往y轴上的点C处,点B落在点B'处。
(1) 求D、E两点的坐标;
(2) 反比例函数y = (k >0) 在第一象限的图像经过E点,判断B′是否在这个反比例函数的图像上? 并说明理由;
(3) 点F是 (2) 中反比例函数的图像与原矩形的AB边的交点,点G在平面直角坐标系中,以点D、E、F、G为顶点的四边形是平行四边形,求G点的坐标.(直接写出答案)
【题目】某电脑批发商第一天运进+50台电脑,第二天运进-32台电脑,第三天运进40台电脑,第四天运进-29台电脑,如果运进记作正的,那么四天共运进电脑多少台?
【题目】抛物线y=ax2+c与x轴交于A、B两点,顶点为C,点P为抛物线上,且位于x轴下方.
(1)如图1,若P(1,-3)、B(4,0),
① 求该抛物线的解析式;
② 若D是抛物线上一点,满足∠DPO=∠POB,求点D的坐标;
(2) 如图2,已知直线PA、PB与y轴分别交于E、F两点.当点P运动时,是否为定值?若是,试求出该定值;若不是,请说明理由.
【题目】已知一次函数y=(6+3m)x+(n-4).
(1)当m,n为何值时,函数图象经过一二四象限?
(2)当m,n为何值时,函数图象与y轴的交点在x轴的下方?