题目内容
【题目】如图在正方形ABCD中,点M为BC边上一点,BM=4MC,以M为直角顶点作等腰直角三角形MEF,点E在对角线BD上,点F在正方形外EF交BC于点N,连CF,若BE=2,S△CMF=3,则MN=_____.
【答案】
【解析】分别过点E、F作EP⊥BC,FQ⊥BC,垂足分别为P、Q,
∴∠BPE=∠EPM=∠FQM=∠FQN=90°,∴EP//FQ,
∴∠PEM+∠EMP=90°,
∵∠EMP+∠QMF=∠EMF=90°,
∴∠PEM=∠QMF,
又∵ME=MF,∴△PEM≌△QMF,∴PE=MQ,PM=FQ,
∵四边形ABCD是正方形,∴∠DBC=45°,∵∠BPE =90°,∴∠BEP=45°=∠EBP,
∴BP=PE=BE=,
∴BM=+PM=+FQ,
∵BM=4CM,S△CMF==3,
∴FQ=3,
∴PQ=PM=MQ=3-=2,
∵EP//FQ,∴△EPN∽△FQN,∴EP:FQ=PN:NQ,
即::3=(2-NQ):NQ,
∴NQ=,
∴MN=NQ+MQ=+=,
故答案为:.
练习册系列答案
相关题目