题目内容

【题目】如图在正方形ABCD中,点MBC边上一点,BM=4MC,以M为直角顶点作等腰直角三角形MEF,点E在对角线BD上,点F在正方形外EFBC于点N,连CF,若BE=2,SCMF=3,则MN_____.

【答案】

【解析】分别过点E、FEPBC,FQBC,垂足分别为P、Q,

∴∠BPE=∠EPM=∠FQM=∠FQN=90°,∴EP//FQ,

∴∠PEM+∠EMP=90°,

∵∠EMP+∠QMF=∠EMF=90°,

∴∠PEM=∠QMF,

又∵ME=MF,∴△PEM≌△QMF,∴PE=MQ,PM=FQ,

∵四边形ABCD是正方形,∴∠DBC=45°,∵∠BPE =90°,∴∠BEP=45°=∠EBP,

∴BP=PE=BE=

∴BM=+PM=+FQ,

∵BM=4CM,SCMF=3

∴FQ=3

∴PQ=PM=MQ=3-=2

∵EP//FQ,∴△EPN∽△FQN,∴EP:FQ=PN:NQ,

即::3=(2-NQ):NQ,

∴NQ=

∴MN=NQ+MQ=+=

故答案为:.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网