ÌâÄ¿ÄÚÈÝ
Èçͼ£¬¶þ´Îº¯Êýy=ax2+x+cµÄͼÏóÓëxÖá½»ÓÚµãA¡¢BÁ½µã£¬ÇÒAµã×ø±êΪ£¨-2£¬0£©£¬ÓëyÖá½»ÓÚµãC£¨0£¬3£©£®
£¨1£©Çó³öÕâ¸ö¶þ´Îº¯ÊýµÄ½âÎöʽ£»
£¨2£©Ö±½Óд³öµãBµÄ×ø±êΪ________£»
£¨3£©ÔÚxÖáÊÇ·ñ´æÔÚÒ»µãP£¬Ê¹¡÷ACPÊǵÈÑüÈý½ÇÐΣ¿Èô´æÔÚ£¬Çó³öÂú×ãÌõ¼þµÄPµã×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨4£©ÔÚµÚÒ»ÏóÏÞÖеÄÅ×ÎïÏßÉÏÊÇ·ñ´æÔÚÒ»µãQ£¬Ê¹µÃËıßÐÎABQCµÄÃæ»ý×î´ó£¿Èô´æÔÚ£¬ÇëÇó³öQµã×ø±ê¼°Ãæ»ýµÄ×î´óÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
½â£º£¨1£©¡ßy=ax2+x+cµÄͼÏó¾¹ýA£¨-2£¬0£©£¬C£¨0£¬3£©£¬
¡àc=3£¬a=-£¬
¡àËùÇó½âÎöʽΪ£ºy=-x2+x+3£¬
´ð£ºÕâ¸ö¶þ´Îº¯ÊýµÄ½âÎöʽÊÇy=-x2+x+3£®
£¨2£©½â£º£¨6£¬0£©£¬
¹Ê´ð°¸Îª£º£¨6£¬0£©£®
£¨3£©½â£ºÔÚRt¡÷AOCÖУ¬
¡ßAO=2£¬OC=3£¬¡àAC=£¬
£¬¢Ùµ±P1A=ACʱ£¨P1ÔÚxÖáµÄ¸º°ëÖᣩ£¬P1£¨-2-£¬0£©£»
¢Úµ±P2A=ACʱ£¨P2ÔÚxÖáµÄÕý°ëÖᣩ£¬P2£¨-2£¬0£©£»
¢Ûµ±P3C=ACʱ£¨P3ÔÚxÖáµÄÕý°ëÖᣩ£¬P3£¨2£¬0£©£»
¢Üµ±P4C=P4Aʱ£¨P4ÔÚxÖáµÄÕý°ëÖᣩ£¬
ÔÚRt¡÷P4OCÖУ¬ÉèP4O=x£¬Ôò£¨x+2£©2=x2+32
½âµÃ£ºx=£¬
¡àP4£¨£¬0£©£»
´ð£ºÔÚxÖá´æÔÚÒ»µãP£¬Ê¹¡÷ACPÊǵÈÑüÈý½ÇÐΣ¬Âú×ãÌõ¼þµÄPµã×ø±êÊÇ£¨-2-£¬0£©»ò£¨-2£¬0£©»ò£¨2£¬0£©»ò£¨£¬0£©£®
£¨4£©½â£ºÈçͼ£¬ÉèQµã×ø±êΪ£¨x£¬y£©£¬ÒòΪµãQÔÚy=-x2+x+3ÉÏ£¬
¼´£ºQµã×ø±êΪ£¨x£¬-x2+x+3£©£¬
Á¬½ÓOQ£¬
SËıßÐÎABQC=S¡÷AOC+S¡÷OQC+S¡÷OBQ£¬
=3+x+3£¨-x2+x+3£©
=-x2+x+12£¬
¡ßa£¼0£¬
¡àSËıßÐÎABQC×î´óÖµ=£¬
Qµã×ø±êΪ£¨3£¬£©£¬
´ð£ºÔÚµÚÒ»ÏóÏÞÖеÄÅ×ÎïÏßÉÏ´æÔÚÒ»µãQ£¬Ê¹µÃËıßÐÎABQCµÄÃæ»ý×î´ó£¬Qµã×ø±êÊÇ£¨3£¬£©£¬Ãæ»ýµÄ×î´óÖµÊÇ£®
·ÖÎö£º£¨1£©ÒòΪy=ax2+x+cµÄͼÏó¾¹ýA£¨-2£¬0£©£¬C£¨0£¬3£©£¬´úÈëÇó³öc¡¢aµÄÖµ£¬¼´¿ÉµÃµ½´ð°¸£»
£¨2£©°Ñy=0´úÈëÇó³öxµÄÖµ£¬¼´¿ÉµÃµ½´ð°¸£»
£¨3£©ÔÚRt¡÷AOCÖиù¾Ý¹´¹É¶¨ÀíÇó³öAC£¬¸ù¾ÝµÈÑüÈý½ÇÐεÄÐÔÖÊÇó³ö£¬¢Ùµ±P1A=ACʱ£¨P1ÔÚxÖáµÄ¸º°ëÖᣩ£¬P1£¨-2-£¬0£©£»¢Úµ±P2A=ACʱ£¨P2ÔÚxÖáµÄÕý°ëÖᣩ£¬P2£¨-2£¬0£©£»¢Ûµ±P3C=ACʱ£¨P3ÔÚxÖáµÄÕý°ëÖᣩ£¬P3£¨2£¬0£©£»¢Üµ±P4C=P4Aʱ£¨P4ÔÚxÖáµÄÕý°ëÖᣩ£¬P4£¨£¬0£©£¬¼´¿ÉµÃ³ö´ð°¸£»
£¨4£©ÉèQµã×ø±êΪ£¨x£¬y£©£¬ÒòΪµãQÔÚy=-x2+x+3ÉÏ£¬µÃ³öQµã×ø±êΪ£¨x£¬-x2+x+3£©£¬Á¬½ÓOQ£¬¸ù¾ÝSËıßÐÎABQC=S¡÷AOC+S¡÷OQC+S¡÷OBQ£¬´úÈëÇó³ö¼´¿É£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²é¶ÔÓôý¶¨ÏµÊý·¨Çó¶þ´Îº¯ÊýµÄ½âÎöʽ£¬µÈÑüÈý½ÇÐεÄÅж¨£¬Èý½ÇÐεÄÃæ»ý£¬¶þ´Îº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷£¬¶þ´Îº¯ÊýµÄ×îÖµµÈ֪ʶµãµÄÀí½âºÍÕÆÎÕ£¬×ÛºÏÔËÓÃÕâЩÐÔÖʽøÐмÆËãÊǽâ´ËÌâµÄ¹Ø¼ü£®ÌâÐͽϺã¬×ÛºÏÐÔÇ¿£®
¡àc=3£¬a=-£¬
¡àËùÇó½âÎöʽΪ£ºy=-x2+x+3£¬
´ð£ºÕâ¸ö¶þ´Îº¯ÊýµÄ½âÎöʽÊÇy=-x2+x+3£®
£¨2£©½â£º£¨6£¬0£©£¬
¹Ê´ð°¸Îª£º£¨6£¬0£©£®
£¨3£©½â£ºÔÚRt¡÷AOCÖУ¬
¡ßAO=2£¬OC=3£¬¡àAC=£¬
£¬¢Ùµ±P1A=ACʱ£¨P1ÔÚxÖáµÄ¸º°ëÖᣩ£¬P1£¨-2-£¬0£©£»
¢Úµ±P2A=ACʱ£¨P2ÔÚxÖáµÄÕý°ëÖᣩ£¬P2£¨-2£¬0£©£»
¢Ûµ±P3C=ACʱ£¨P3ÔÚxÖáµÄÕý°ëÖᣩ£¬P3£¨2£¬0£©£»
¢Üµ±P4C=P4Aʱ£¨P4ÔÚxÖáµÄÕý°ëÖᣩ£¬
ÔÚRt¡÷P4OCÖУ¬ÉèP4O=x£¬Ôò£¨x+2£©2=x2+32
½âµÃ£ºx=£¬
¡àP4£¨£¬0£©£»
´ð£ºÔÚxÖá´æÔÚÒ»µãP£¬Ê¹¡÷ACPÊǵÈÑüÈý½ÇÐΣ¬Âú×ãÌõ¼þµÄPµã×ø±êÊÇ£¨-2-£¬0£©»ò£¨-2£¬0£©»ò£¨2£¬0£©»ò£¨£¬0£©£®
£¨4£©½â£ºÈçͼ£¬ÉèQµã×ø±êΪ£¨x£¬y£©£¬ÒòΪµãQÔÚy=-x2+x+3ÉÏ£¬
¼´£ºQµã×ø±êΪ£¨x£¬-x2+x+3£©£¬
Á¬½ÓOQ£¬
SËıßÐÎABQC=S¡÷AOC+S¡÷OQC+S¡÷OBQ£¬
=3+x+3£¨-x2+x+3£©
=-x2+x+12£¬
¡ßa£¼0£¬
¡àSËıßÐÎABQC×î´óÖµ=£¬
Qµã×ø±êΪ£¨3£¬£©£¬
´ð£ºÔÚµÚÒ»ÏóÏÞÖеÄÅ×ÎïÏßÉÏ´æÔÚÒ»µãQ£¬Ê¹µÃËıßÐÎABQCµÄÃæ»ý×î´ó£¬Qµã×ø±êÊÇ£¨3£¬£©£¬Ãæ»ýµÄ×î´óÖµÊÇ£®
·ÖÎö£º£¨1£©ÒòΪy=ax2+x+cµÄͼÏó¾¹ýA£¨-2£¬0£©£¬C£¨0£¬3£©£¬´úÈëÇó³öc¡¢aµÄÖµ£¬¼´¿ÉµÃµ½´ð°¸£»
£¨2£©°Ñy=0´úÈëÇó³öxµÄÖµ£¬¼´¿ÉµÃµ½´ð°¸£»
£¨3£©ÔÚRt¡÷AOCÖиù¾Ý¹´¹É¶¨ÀíÇó³öAC£¬¸ù¾ÝµÈÑüÈý½ÇÐεÄÐÔÖÊÇó³ö£¬¢Ùµ±P1A=ACʱ£¨P1ÔÚxÖáµÄ¸º°ëÖᣩ£¬P1£¨-2-£¬0£©£»¢Úµ±P2A=ACʱ£¨P2ÔÚxÖáµÄÕý°ëÖᣩ£¬P2£¨-2£¬0£©£»¢Ûµ±P3C=ACʱ£¨P3ÔÚxÖáµÄÕý°ëÖᣩ£¬P3£¨2£¬0£©£»¢Üµ±P4C=P4Aʱ£¨P4ÔÚxÖáµÄÕý°ëÖᣩ£¬P4£¨£¬0£©£¬¼´¿ÉµÃ³ö´ð°¸£»
£¨4£©ÉèQµã×ø±êΪ£¨x£¬y£©£¬ÒòΪµãQÔÚy=-x2+x+3ÉÏ£¬µÃ³öQµã×ø±êΪ£¨x£¬-x2+x+3£©£¬Á¬½ÓOQ£¬¸ù¾ÝSËıßÐÎABQC=S¡÷AOC+S¡÷OQC+S¡÷OBQ£¬´úÈëÇó³ö¼´¿É£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²é¶ÔÓôý¶¨ÏµÊý·¨Çó¶þ´Îº¯ÊýµÄ½âÎöʽ£¬µÈÑüÈý½ÇÐεÄÅж¨£¬Èý½ÇÐεÄÃæ»ý£¬¶þ´Îº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷£¬¶þ´Îº¯ÊýµÄ×îÖµµÈ֪ʶµãµÄÀí½âºÍÕÆÎÕ£¬×ÛºÏÔËÓÃÕâЩÐÔÖʽøÐмÆËãÊǽâ´ËÌâµÄ¹Ø¼ü£®ÌâÐͽϺã¬×ÛºÏÐÔÇ¿£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿