题目内容

【题目】如图,正六边形ABCDEF的边长为6cm,P是对角线BE上一动点,过点P作直线l与BE垂直,动点P从B点出发且以1cm/s的速度匀速平移至E点.设直线l扫过正六边形ABCDEF区域的面积为S(cm2),点P的运动时间为t(s),下列能反映S与t之间函数关系的大致图象是(  )

A. B. C. D.

【答案】C

【解析】由题意得:BP=t,

如图1,连接AC,交BE于G,Rt△ABG中,AB=6,∠ABG=60°,∴∠BAG=30°,

∴BG=AB=3,

由勾股定理得:AG= =3,∴AC=2AG=6

当0≤t≤3时,PM=t,∴MN=2t,S=S△BMN=MNPB=× t2= t2

所以选项A和B不正确;

如图2,当9≤t≤12时,PE=12﹣t,

∵∠MEP=60°,∴tan∠MEP= ,∴PM=(12﹣t),∴MN=2PM=2(12﹣t),

∴S=S正六边形﹣S△EMN=2×(AF+BE)×AG﹣MNPE=(6+12)×3×2(12﹣t)(12﹣t)=﹣t2+24t﹣90

此二次函数的开口向下,

所以选项C正确,选项D不正确;

故选C.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网