题目内容
【题目】已知:在纸面上有一数轴,如图所示,点O为原点,点A1、A2、A3、…分别表示有理数1、2、3、…,点B1、B2、B3、…分别表示有理数﹣1、﹣2、﹣3、….
(1)折叠纸面:
①若点A1与点B1重合,则点B2与点 重合;
②若点B1与点A2重合,则点A5与有理数 对应的点重合;
③若点B1与A3重合,当数轴上的M、N(M在N的左侧)两点之间的距离为9,且M、N两点经折叠后重合时,则M、N两点表示的有理数分别是 , ;
(2)拓展思考:
点A在数轴上表示的有理数为a,用|a|表示点A到原点O的距离.
①|a﹣1|是表示点A到点 的距离;
②若|a﹣1|=3,则有理数a= ;
③若|a﹣1|+|a+2|=5,则有理数a= .
【答案】(1) ①A2,②B4, ③﹣3.5,5.5;(2) ①A1,②﹣2或4,③﹣3或2
【解析】
(1)①根据中心对称,可得对称中心,根据对称中心,可得点的对应点;
②根据中心对称,可得对称中心,根据对称中心,可得点的对应点;
③根据中心对称,可得对称中心,根据对称中心到任意一点的距离相等,可得点的对应点;
(2)①根据两点间的距离公示,可得答案;
②根据数轴上到一点距离相等点有两个,位于该点的左右,可得答案;
③根据解含绝对值符号的一元一次方程,可得方程的解.
解:(1)折叠纸面:
①若点A1与点B1重合,则点B2与点 A2重合;
②若点B1与点A2重合,则点A5与有理数 B4对应的点重合;
③若点B1与A3重合,当数轴上的M、N(M在N的左侧)两点之间的距离为9,且M、N两点经折叠后重合时,则M、N两点表示的有理数分别是﹣3.5,5.5;
(2)拓展思考:
点A在数轴上表示的有理数为a,用|a|表示点A到原点O的距离.
①|a﹣1|是表示点A到点 A1的距离;
②若|a﹣1|=3,则有理数a=﹣2或4;
③若|a﹣1|+|a+2|=5,则有理数a=﹣3或 2,
故答案为:A2,B4﹣3.5,5.5,A1,﹣2或4,﹣3或2.
【题目】如图,点A、B在数轴上表示的数分别为﹣12和8,两只蚂蚁M、N分别从A、B两点同时匀速出发,同向而行
时间/秒 | 0 | 1 | 5 |
A点位置 | ﹣12 | ﹣9 |
|
B点位置 | 8 |
| 18 |
(1)请填写表格;
(2)若两只蚂蚁在数轴上点P相遇,求点P在数轴上表示的数;
(3)若运动t秒钟时,两只蚂蚁的距离为10,求出t的值.
【题目】成都华联商场经销甲、乙两种商品,甲种商品每件进价150元,售价200元;乙种商品每件进价350元,售价450元.
(1)该商场在“十一”黄金周期间销售甲、乙两种商品共100件,销售额为35000元,求甲、乙两种商品各销售了多少件?
(2)假若该商场在“十一”黄金周期间销售甲、乙两种商品进行如下优惠活动:
打折前一次性购物总金额 | 优惠措施 |
不超过3000元 | 不优惠 |
超过3000元且不超过4000元 | 总售价打九折 |
超过4000元 | 总售价打八折 |
按上述优惠条件,若小王第一天只购买甲种商品一次性付款2000元,第二天只购买乙种商品打折后一次性付款3240元,那么这两天他在该商场购买甲、乙两种商品一共多少件?