题目内容
【题目】已知两点在数轴上所表示的数分别为且满足.
(1)则 , ;
(2)若点从点出发,以每秒1个单位长度的速度向右运动,同时点Q从M点出发,以每秒1个单位长度的速度向左运动,经过多长时间后两点相距7个单位长度?
(3)若为线段上的两点,且,点从点出发,以每秒2个单位长度的速度向左运动,点从点出发,以每秒4个单位长度的速度向右运动,点R从B点出发,以每秒3个单位长度的速度向右运动,P,Q,R同时出发,是否存在常数,使得的值与它们的运动时间无关,为定值。若存在,请求出和这个定值;若不存在,请说明理由.
【答案】(1)m=12,n=-3; (2)或11;(3)存在,k=2,定值为5.
【解析】
(1)由绝对值和完全平方式的非负性可求m,n的值;
(2)由题意可得P点对应的数是-3+t,Q点对应的数是12-t,根据两点间的距离列方程,即可求解;
(3)用t分别表示出PQ,AR的长度,然后化简,即可求解.
解:(1)∵
∴m-12=0;n+3=0
∴m=12,n=-3
(2) t秒后P、M两点相距7个单位长度。
依题意, P点对应的数是-3+t,Q点对应的数是12-t,
2t-15=7或2t-15=-7
解得:t=11或t=4
(3)设运动时间为t秒,依题意,点A对应的数是2,点B对应的数是7,点P对应的数是
-3-2t,点Q对应的数是12+4t, 点R对应的数是7+3t,
当的值与t无关,则6-3k=0
解得:k=2
∴当k=2时,的值与t无关,其值为定值5.
练习册系列答案
相关题目