ÌâÄ¿ÄÚÈÝ
£¨2013•ÑîÆÖÇø¶þÄ££©Èçͼ1£¬ÒÑÖª¡ÑOµÄ°ë¾¶³¤Îª3£¬µãAÊÇ¡ÑOÉÏÒ»¶¨µã£¬µãPΪ¡ÑOÉϲ»Í¬ÓÚµãAµÄ¶¯µã£®
£¨1£©µ±tanA=
ʱ£¬ÇóAPµÄ³¤£»
£¨2£©Èç¹û¡ÑQ¹ýµãP¡¢O£¬ÇÒµãQÔÚÖ±ÏßAPÉÏ£¨Èçͼ2£©£¬ÉèAP=x£¬QP=y£¬Çóy¹ØÓÚxµÄº¯Êý¹ØÏµÊ½£¬²¢Ð´³öº¯ÊýµÄ¶¨ÒåÓò£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬µ±tanA=
ʱ£¨Èçͼ3£©£¬´æÔÚ¡ÑMÓë¡ÑOÏàÄÚÇУ¬Í¬Ê±Óë¡ÑQÏàÍâÇУ¬ÇÒOM¡ÍOQ£¬ÊÔÇó¡ÑMµÄ°ë¾¶µÄ³¤£®

£¨1£©µ±tanA=
| 1 |
| 2 |
£¨2£©Èç¹û¡ÑQ¹ýµãP¡¢O£¬ÇÒµãQÔÚÖ±ÏßAPÉÏ£¨Èçͼ2£©£¬ÉèAP=x£¬QP=y£¬Çóy¹ØÓÚxµÄº¯Êý¹ØÏµÊ½£¬²¢Ð´³öº¯ÊýµÄ¶¨ÒåÓò£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬µ±tanA=
| 4 |
| 3 |
·ÖÎö£º£¨1£©¹ýµãP×÷PB¡ÍOA½»AOµÄÑÓ³¤ÏßÓÚB£¬Á¬½ÓOP£¬ÉèPB=a£¬¸ù¾Ý¡ÏAµÄÕýÇÐÖµ±íʾ³öAB=2a£¬ÔÙ±íʾ³öOE=2a-3£¬ÔÚRt¡÷POBÖУ¬ÀûÓù´¹É¶¨ÀíÁз½³ÌÇó³öa£¬È»ºóÔÚRt¡÷ABPÖУ¬ÀûÓù´¹É¶¨ÀíÁÐʽ¼ÆËã¼´¿ÉÇó³öAP£»
£¨2£©Á¬½ÓOP¡¢OQ£¬¸ù¾ÝµÈ±ß¶ÔµÈ½Ç¿ÉµÃ¡ÏP=¡ÏPOQ=¡ÏA£¬Çó³ö¡÷AOPºÍ¡÷PQOÏàËÆ£¬ÀûÓÃÏàËÆÈý½ÇÐζÔÓ¦±ß³É±ÈÀýÁÐʽÕûÀí¼´¿ÉµÃµ½yÓëxµÄ¹ØÏµÊ½£¬¸ù¾ÝÖ±¾¶ÊÇÔ²µÄ×µÄÏÒд³öxµÄȡֵ·¶Î§£»
£¨3£©¹ýµãO×÷OC¡ÍAPÓÚC£¬¸ù¾Ý¡ÏAµÄÕýÇÐÖµ£¬ÉèOC=4b£¬ÔòAC=3b£¬ÔÚRt¡÷AOCÖУ¬ÀûÓù´¹É¶¨ÀíÁз½³ÌÇó³öb£¬´Ó¶øµÃµ½OC¡¢AC£¬ÔÙ¸ù¾ÝµÈÑüÈý½ÇÐÎÈýÏߺÏÒ»µÄÐÔÖʿɵÃPC=AC£¬Éè¡ÑQµÄ°ë¾¶Îªc£¬È»ºó±íʾ³öCQ£¬ÔÚRt¡÷COQÖУ¬ÀûÓù´¹É¶¨ÀíÁз½³ÌÇó³öc£¬Éè¡ÑMµÄ°ë¾¶Îªr£¬¸ù¾ÝÔ²ÓëÔ²µÄλÖùØÏµ±íʾ³öMQ¡¢MOÈ»ºóÀûÓù´¹É¶¨ÀíÁз½³ÌÇó½â¼´¿ÉµÃµ½rµÄÖµ£¬´Ó¶øµÃ½â£®
£¨2£©Á¬½ÓOP¡¢OQ£¬¸ù¾ÝµÈ±ß¶ÔµÈ½Ç¿ÉµÃ¡ÏP=¡ÏPOQ=¡ÏA£¬Çó³ö¡÷AOPºÍ¡÷PQOÏàËÆ£¬ÀûÓÃÏàËÆÈý½ÇÐζÔÓ¦±ß³É±ÈÀýÁÐʽÕûÀí¼´¿ÉµÃµ½yÓëxµÄ¹ØÏµÊ½£¬¸ù¾ÝÖ±¾¶ÊÇÔ²µÄ×µÄÏÒд³öxµÄȡֵ·¶Î§£»
£¨3£©¹ýµãO×÷OC¡ÍAPÓÚC£¬¸ù¾Ý¡ÏAµÄÕýÇÐÖµ£¬ÉèOC=4b£¬ÔòAC=3b£¬ÔÚRt¡÷AOCÖУ¬ÀûÓù´¹É¶¨ÀíÁз½³ÌÇó³öb£¬´Ó¶øµÃµ½OC¡¢AC£¬ÔÙ¸ù¾ÝµÈÑüÈý½ÇÐÎÈýÏߺÏÒ»µÄÐÔÖʿɵÃPC=AC£¬Éè¡ÑQµÄ°ë¾¶Îªc£¬È»ºó±íʾ³öCQ£¬ÔÚRt¡÷COQÖУ¬ÀûÓù´¹É¶¨ÀíÁз½³ÌÇó³öc£¬Éè¡ÑMµÄ°ë¾¶Îªr£¬¸ù¾ÝÔ²ÓëÔ²µÄλÖùØÏµ±íʾ³öMQ¡¢MOÈ»ºóÀûÓù´¹É¶¨ÀíÁз½³ÌÇó½â¼´¿ÉµÃµ½rµÄÖµ£¬´Ó¶øµÃ½â£®
½â´ð£º½â£º£¨1£©Èçͼ1£¬¹ýµãP×÷PB¡ÍOA½»AOµÄÑÓ³¤ÏßÓÚB£¬Á¬½ÓOP£¬ÉèPB=a£¬
¡ßtanA=
£¬
¡àAB=2a£¬
¡àOB=AB-OA=2a-3£¬
ÔÚRt¡÷POBÖУ¬PB2+OB2=OP2£¬
¼´a2+£¨2a-3£©2=32£¬
½âµÃa1=
£¬a2=0£¨ÉáÈ¥£©£¬
¡àAB=2¡Á
=
£¬
ÔÚRt¡÷ABPÖУ¬AP=
=
=
£»
£¨2£©Á¬½ÓOP¡¢OQ£¬ÔòAO=PO£¬PQ=OQ£¬
¡à¡ÏP=¡ÏA£¬¡ÏPOQ=¡ÏP£¬
¡à¡ÏP=¡ÏPOQ=¡ÏA£¬
¡à¡÷AOP¡×¡÷PQO£¬
¡à
=
£¬
¼´
=
£¬
ÕûÀíµÃ£¬y=
£¬
¡ß¡ÑOµÄ°ë¾¶Îª3£¬µãP²»Í¬ÓÚµãA£¬
¡à0£¼x¡Ü6£»
¡ày=
£¨0£¼x¡Ü6£©£»
£¨3£©¹ýµãO×÷OC¡ÍAPÓÚC£¬
¡ßtanA=
£¬
¡àÉèOC=4b£¬AC=3b£¬
ÔÚRt¡÷AOCÖУ¬OC2+AC2=OA2£¬
¼´£¨4b£©2+£¨3b£©2=32£¬
½âµÃb=
£¬
¡àOC=4¡Á
=
£¬AC=3¡Á
=
£¬
¸ù¾Ý´¹¾¶¶¨Àí£¬PC=AC=
£¬
Éè¡ÑQµÄ°ë¾¶Îªc£¬ÔòCQ=QP-PC=c-
£¬
ÔÚRt¡÷COQÖУ¬OC2+CQ2=OQ2£¬
¼´£¨
£©2+£¨c-
£©2=c2£¬
½âµÃc=
£¬
Éè¡ÑMµÄ°ë¾¶Îªr£¬
¡ß¡ÑMÓë¡ÑOÏàÄÚÇУ¬Í¬Ê±Óë¡ÑQÏàÍâÇУ¬
¡àMO=3-r£¬MQ=r+
£¬
ÔÚRt¡÷OMQÖУ¬MO2+OQ2=MQ2£¬
¼´£¨3-r£©2+£¨
£©2=£¨r+
£©2£¬
½âµÃr=
£®
¡ßtanA=
| 1 |
| 2 |
¡àAB=2a£¬
¡àOB=AB-OA=2a-3£¬
ÔÚRt¡÷POBÖУ¬PB2+OB2=OP2£¬
¼´a2+£¨2a-3£©2=32£¬
½âµÃa1=
| 12 |
| 5 |
¡àAB=2¡Á
| 12 |
| 5 |
| 24 |
| 5 |
ÔÚRt¡÷ABPÖУ¬AP=
| PB2+AB2 |
(
|
12
| ||
| 5 |
£¨2£©Á¬½ÓOP¡¢OQ£¬ÔòAO=PO£¬PQ=OQ£¬
¡à¡ÏP=¡ÏA£¬¡ÏPOQ=¡ÏP£¬
¡à¡ÏP=¡ÏPOQ=¡ÏA£¬
¡à¡÷AOP¡×¡÷PQO£¬
¡à
| QP |
| OP |
| OP |
| AP |
¼´
| y |
| 3 |
| 3 |
| x |
ÕûÀíµÃ£¬y=
| 9 |
| x |
¡ß¡ÑOµÄ°ë¾¶Îª3£¬µãP²»Í¬ÓÚµãA£¬
¡à0£¼x¡Ü6£»
¡ày=
| 9 |
| x |
£¨3£©¹ýµãO×÷OC¡ÍAPÓÚC£¬
¡ßtanA=
| 4 |
| 3 |
¡àÉèOC=4b£¬AC=3b£¬
ÔÚRt¡÷AOCÖУ¬OC2+AC2=OA2£¬
¼´£¨4b£©2+£¨3b£©2=32£¬
½âµÃb=
| 3 |
| 5 |
¡àOC=4¡Á
| 3 |
| 5 |
| 12 |
| 5 |
| 3 |
| 5 |
| 9 |
| 5 |
¸ù¾Ý´¹¾¶¶¨Àí£¬PC=AC=
| 9 |
| 5 |
Éè¡ÑQµÄ°ë¾¶Îªc£¬ÔòCQ=QP-PC=c-
| 9 |
| 5 |
ÔÚRt¡÷COQÖУ¬OC2+CQ2=OQ2£¬
¼´£¨
| 12 |
| 5 |
| 9 |
| 5 |
½âµÃc=
| 5 |
| 2 |
Éè¡ÑMµÄ°ë¾¶Îªr£¬
¡ß¡ÑMÓë¡ÑOÏàÄÚÇУ¬Í¬Ê±Óë¡ÑQÏàÍâÇУ¬
¡àMO=3-r£¬MQ=r+
| 5 |
| 2 |
ÔÚRt¡÷OMQÖУ¬MO2+OQ2=MQ2£¬
¼´£¨3-r£©2+£¨
| 5 |
| 2 |
| 5 |
| 2 |
½âµÃr=
| 9 |
| 11 |
µãÆÀ£º±¾Ì⿼²éÁËÔ²µÄ×ÛºÏÌâÐÍ£¬Ö÷ÒªÀûÓÃÁ˽âÖ±½ÇÈý½ÇÐΣ¬¹´¹É¶¨Àí£¬Í¬Ò»¸öÔ²µÄ°ë¾¶ÏàµÈ£¬µÈ±ß¶ÔµÈ½ÇµÄÐÔÖÊ£¬ÏàËÆÈý½ÇÐεÄÅж¨ÓëÐÔÖÊ£¬Ô²ÓëÔ²µÄλÖùØÏµ£¬×÷¸¨ÖúÏß¹¹Ôì³öÖ±½ÇÈý½ÇÐÎÓëÏàËÆÈý½ÇÐÎÊǽâÌâµÄ¹Ø¼ü£¬ÄѵãÔÚÓÚ·´¸´ÀûÓù´¹É¶¨ÀíÁгö·½³ÌÇó½â£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿