题目内容
【题目】如图,已知函数y=x+1和y=ax+3的图象交于点P,点P的横坐标为1,
(1)关于x,y的方程组 的解是 ;
(2)a= ;
(3)求出函数y=x+1和y=ax+3的图象与x轴围成的几何图形的面积.
【答案】(1);(2)-1;(3)4
【解析】
(1)先求出点P为(1,2),再把P点代入解析式即可解答.
(2)把P(1,2)代入y=ax+3,即可解答.
(3)根据y=x+1与x轴的交点为(﹣1,0),y=﹣x+3与x轴的交点为(3,0),即可得到这两个交点之间的距离,再根据三角形的面积公式,即可解答.
(1)把x=1代入y=x+1,得出y=2,
函数y=x+1和y=ax+3的图象交于点P(1,2),
即x=1,y=2同时满足两个一次函数的解析式.
所以关于x,y的方程组 的解是 .
故答案为;
(2)把P(1,2)代入y=ax+3,
得2=a+3,解得a=﹣1.
故答案为﹣1;
(3)∵函数y=x+1与x轴的交点为(﹣1,0),
y=﹣x+3与x轴的交点为(3,0),
∴这两个交点之间的距离为3﹣(﹣1)=4,
∵P(1,2),
∴函数y=x+1和y=ax+3的图象与x轴围成的几何图形的面积为:×4×2=4.
【题目】二次函数y=ax2+bx+c的自变量x与函数值y的部分对应值如下表:
x | … | ﹣1 | 0 | 1 | 2 | 3 | … |
y | … | ﹣1 | ﹣ | ﹣2 | ﹣ | … |
根据表格中的信息,完成下列各题:
(1)当x=3时,y=________;
(2)当x=_____时,y有最________值为________;
(3)若点A(x1,y1)、B(x2,y2)是该二次函数图象上的两点,且﹣1<x1<0,1<x2<2,试比较两函数值的大小:y1________y2 ;
(4)若自变量x的取值范围是0≤x≤5,则函数值y的取值范围是________.