题目内容

【题目】阅读下面材料:
在数学课上,老师请同学思考如下问题:如图1,我们把一个四边形ABCD的四边中点E,F,G,H依次连接起来得到的四边形EFGH是平行四边形吗?
小敏在思考问题是,有如下思路:连接AC.

结合小敏的思路作答

(1)若只改变图1中四边形ABCD的形状(如图2),则四边形EFGH还是平行四边形吗?说明理由;参考小敏思考问题方法解决一下问题:
(2)如图2,在(1)的条件下,若连接AC,BD.
①当AC与BD满足什么条件时,四边形EFGH是菱形,写出结论并证明;
②当AC与BD满足什么条件时,四边形EFGH是矩形,直接写出结论.

【答案】
(1)

解:是平行四边形,

证明:如图2,连接AC,

∵E是AB的中点,F是BC的中点,

∴EF∥AC,EF= AC,

同理HG∥AC,HG= AC,

综上可得:EF∥HG,EF=HG,

故四边形EFGH是平行四边形


(2)

解:①AC=BD.

理由如下:

由(1)知,四边形EFGH是平行四边形,且FG= BD,HG= AC,

∴当AC=BD时,FG=HG,

∴平行四边形EFGH是菱形

②当AC⊥BD时,四边形EFGH为矩形;

理由如下:

同(2)得:四边形EFGH是平行四边形,

∵AC⊥BD,GH∥AC,

∴GH⊥BD,

∵GF∥BD,

∴GH⊥GF,

∴∠HGF=90°,

∴四边形EFGH为矩形.


【解析】(1)如图2,连接AC,根据三角形中位线的性质得到EF∥AC,EF= AC,然后根据平行四边形判定定理即可得到结论;(2)由(1)知,四边形EFGH是平行四边形,且FG= BD,HG= AC,于是得到当AC=BD时,FG=HG,即可得到结论;(3)根据平行线的性质得到GH⊥BD,GH⊥GF,于是得到∠HGF=90°,根据矩形的判定定理即可得到结论.此题主要考查了中点四边形,关键是掌握三角形中位线定理,三角形的中位线平行于第三边且等于第三边的一半.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网