题目内容
【题目】阅读下面材料:
在数学课上,老师请同学思考如下问题:如图1,我们把一个四边形ABCD的四边中点E,F,G,H依次连接起来得到的四边形EFGH是平行四边形吗?
小敏在思考问题是,有如下思路:连接AC.
结合小敏的思路作答
(1)若只改变图1中四边形ABCD的形状(如图2),则四边形EFGH还是平行四边形吗?说明理由;参考小敏思考问题方法解决一下问题:
(2)如图2,在(1)的条件下,若连接AC,BD.
①当AC与BD满足什么条件时,四边形EFGH是菱形,写出结论并证明;
②当AC与BD满足什么条件时,四边形EFGH是矩形,直接写出结论.
【答案】
(1)
解:是平行四边形,
证明:如图2,连接AC,
∵E是AB的中点,F是BC的中点,
∴EF∥AC,EF= AC,
同理HG∥AC,HG= AC,
综上可得:EF∥HG,EF=HG,
故四边形EFGH是平行四边形
(2)
解:①AC=BD.
理由如下:
由(1)知,四边形EFGH是平行四边形,且FG= BD,HG= AC,
∴当AC=BD时,FG=HG,
∴平行四边形EFGH是菱形
②当AC⊥BD时,四边形EFGH为矩形;
理由如下:
同(2)得:四边形EFGH是平行四边形,
∵AC⊥BD,GH∥AC,
∴GH⊥BD,
∵GF∥BD,
∴GH⊥GF,
∴∠HGF=90°,
∴四边形EFGH为矩形.
【解析】(1)如图2,连接AC,根据三角形中位线的性质得到EF∥AC,EF= AC,然后根据平行四边形判定定理即可得到结论;(2)由(1)知,四边形EFGH是平行四边形,且FG= BD,HG= AC,于是得到当AC=BD时,FG=HG,即可得到结论;(3)根据平行线的性质得到GH⊥BD,GH⊥GF,于是得到∠HGF=90°,根据矩形的判定定理即可得到结论.此题主要考查了中点四边形,关键是掌握三角形中位线定理,三角形的中位线平行于第三边且等于第三边的一半.
【题目】在读书月活动中,某校号召全体师生积极捐书,为了解所捐书籍的种类,图书管理员对部分书籍进行了抽样调查,根据调查数据绘制了如下不完整的统计图表.请你根据统计图表所提供的信息回答下面问题:
某校师生捐书种类情况统计表
种类 | 频数 | 百分比 |
A.科普类 | 12 | n |
B.文学类 | 14 | 35% |
C.艺术类 | m | 20% |
D.其它类 | 6 | 15% |
(1)统计表中的m= , n=;
(2)补全条形统计图;
(3)本次活动师生共捐书2000本,请估计有多少本科普类图书?