题目内容
【题目】有两个可以自由转动的均匀转盘A、B,都被分成了3等份,并在每份内均标有数字,如图所示,规则如下:
①分别转动转盘A、B.
②两个转盘停止后,将两个指针所指份内的数字相乘(若指针停在等分线上,那么重转一次,直到指针指向某一份为止).
(1)用列表法(或树状图)分别求出数字之积为3的倍数和为5的倍数的概率;
(2)小亮和小芸想用这两个转盘做游戏,他们规定:数字之积为3的倍数时,小亮得2分;数字之积为5的倍数时,小芸得3分.这个游戏对双方公平吗?请说明理由;认为不公平的,试修改得分规定,使游戏双方公平.
【答案】
(1)解:
转盘B的数字 转盘A的数字 | 4 | 5 | 6 |
1 | (1,4) | (1,5) | (1,6) |
2 | (2,4) | (2,5) | (2,6) |
3 | (3,4) | (3,5) | (3,6) |
每次游戏可能出现的所有结果列表如下:
表格中共有9种等可能的结果,
则数字之积为3的倍数的有五种,
其概率为 ;数字之积为5的倍数的有三种,
其概率为 =
(2)解:这个游戏对双方不公平.
∵小亮平均每次得分为 (分),
小芸平均每次得分为 (分),
∵ ,∴游戏对双方不公平.修改得分规定为:
若数字之积为3的倍数时,小亮得3分;
若数字之积为5的倍数时,小芸得5分即可
【解析】游戏是否公平,关键要看游戏双方获胜的机会是否相等,即判断双方取胜的概率是否相等,或转化为在总情况明确的情况下,判断双方取胜所包含的情况数目是否相等.
练习册系列答案
相关题目