题目内容

如图,△ABC内接于⊙O,∠B=45°,AC=4,则⊙O的半径为(  )
分析:首先作直径AD,连接CD,根据圆周角定理,易得△ACD是等腰直角三角形,继而根据等腰直角三角形的性质,即可求得答案.
解答:解:作直径AD,连接CD,
则∠ACD=90°,
∵∠B=45°,
∴∠D=∠B=45°,
∵AC=4,
∴AD=
AC
sin45°
=
2
AC=4
2

∴⊙O的半径为:2
2

故选A.
点评:此题考查了圆周角定理与等腰直角三角形的性质.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网