题目内容
【题目】计算:a2a3=_____.
【答案】a5.
【解析】根据同底数的幂的乘法,底数不变,指数相加,计算即可.
a2a3
=a2+3
=a5,
故答案为:a5.
【题目】以下四种沿AB折叠的方法中,不一定能判定纸带两条边线a,b互相平行的是( ) A.如图1,展开后测得∠1=∠2B.如图2,展开后测得∠1=∠2且∠3=∠4C.如图3,测得∠1=∠2D.如图4,展开后再沿CD折叠,两条折痕的交点为O,测得OA=OB,OC=OD
【题目】如图,△ABC中,∠A=36°,AB=AC,BD平分∠ABC,DE∥BC,则图中等腰三角形的个数( ) A.1个B.3个C.4个D.5个
【题目】已知ab=3,a+b=5,则a3b+2a2b2+ab3的值_____.
【题目】课堂上老师布置给每个小组一个任务,用抽样调查的方法估计全班同学的平均身高,坐在教室最后面的小强为了争速度,立即就近向他周围的三个同学做调查,计算出他们四个人的平均身高后就举手向老师示意已经完成任务了.小强所选用的这种抽样调查的方式你认为合适吗?为什么?
【题目】某公园的成人票价是15元,儿童买半票,甲旅行团有x(名)成年人和y(名)儿童,乙旅行团的成人数是甲旅行团的2倍,儿童数比甲旅行团的2倍少8人.这两个旅行团的门票费用总和各是多少?
【题目】在一条东西走向的马路旁,有青少年宫、学校、商场、医院四家公共场所,已知青少年宫在学校东300m处,商场在学校西200m处,医院在学校东500m处,若将马路近似地看作一条直线,以学校为原点,向东方向为正方向,用1个单位长度表示100m.(1)在数轴上表示出四家公共场所的位置;(2)列式计算青少年宫与商场之间的距离.
【题目】如图,在正方形ABCD中,E、F是对角线BD上两点,且∠EAF=45°,将△ADF绕点A顺时针旋转90°后,得到△ABQ,连接EQ,求证:
(1)EA是∠QED的平分线;
(2).
【题目】按要求完成下列题目.(1)求: + + +…+ 的值. 对于这个问题,可能有的同学接触过,一般方法是考虑其中的一般项,注意到上面和式的每一项可以写成 的形式,而 = ﹣ ,这样就把 一项(分)裂成了两项.试着把上面和式的每一项都裂成两项,注意观察其中的规律,求出上面的和,并直接写出 + + +…+ 的值.(2)若 = + ①求:A、B的值:②求: + +…+ 的值.