题目内容
24、已知:如图,在?ABCD中,对角线AC交BD于点O,四边形AODE是平行四边形.求证:四边形ABOE、四边形DCOE都是平行四边形.
分析:因为?ABCD,OB=OD,又AODE是平行四边形,AE=OD,所以AE=OB,又AE∥OD,根据平行四边形的判定,可推出四边形ABOE是平行四边形.同理,也可推出四边形DCOE是平行四边形.
解答:证明∵?ABCD中,对角线AC交BD于点O,
∴OB=OD,
又∵四边形AODE是平行四边形,
∴AE∥OD且AE=OD,
∴AE∥OB且AE=OB,
∴四边形ABOE是平行四边形,
同理可证,四边形DCOE也是平行四边形.
∴OB=OD,
又∵四边形AODE是平行四边形,
∴AE∥OD且AE=OD,
∴AE∥OB且AE=OB,
∴四边形ABOE是平行四边形,
同理可证,四边形DCOE也是平行四边形.
点评:此题要求掌握平行四边形的判定定理:有一组对边平行且相等的四边形是平行四边形.
练习册系列答案
相关题目