题目内容
【题目】对于满足0≤p≤4的一切实数,不等式x2+px>4x+p﹣3恒成立,则实数x的取值范围是_______.
【答案】x>3或x<﹣1
【解析】试题解析:令y=x2+px-(4x+p-3)=x2+px-3x-(x+p-3)
=x(x+p-3)-(x+p-3)
=(x-1)(x+p-3)>0
∴其解为 x>1 且 x>3-p①,或x<1 且x<3-p②,
因为 0≤p≤4,
∴-1≤3-p≤3,
在①中,要求x大于1和3-p中较大的数,而3-p最大值为3,故x>3;
在②中,要求x小于1和3-p中较小的数,而3-p最小值为-1,故x<-1;
故原不等式恒成立时,x的取值范围为:x>3或x<-1.
故答案为:x>3或x<-1.
练习册系列答案
相关题目