题目内容
【题目】如图,AD为△ABC的中线,BE为△ABD的中线.
(1)∠ABE=15°,∠BAD=40°,求∠BED的度数;
(2)作△BED的边BD边上的高;
(3)若△ABC的面积为40,BD=5,则△BDE 中BD边上的高为多少?
【答案】(1)55°;(2)作图见解析;(3)4.
【解析】试题分析:(1)根据三角形内角与外角的性质解答即可;
(2)过E作BC边的垂线即可;
(3)过A作BC边的垂线AG,再根据三角形中位线定理求解即可.
试题解析:(1)∵∠BED是△ABE的外角,
∴∠BED=∠ABE+∠BAD=15°+40°=55°;
(2)过E作BC边的垂线,F为垂足,则EF为所求;
(3)过A作BC边的垂线AG,
∴AD为△ABC的中线,BD=5,
∴BC=2BD=2×5=10,
∵△ABC的面积为40,
∴BCAG=40,
即×10AG=40,解得AG=8,
∵EF⊥BC于F,
∴EF∥AG,
∵E为AD的中点,
∴EF是△AGD的中位线,
∴EF=AG=×8=4.
练习册系列答案
相关题目