题目内容
【题目】如图,已知AD为△ABC的高,AD=BC,以AB为底边作等腰Rt△ABE,EF∥AD,交AC于F,连ED,EC,有以下结论:①△ADE≌△BCE;②CE⊥AB;③BD=2EF;④S△BDE=S△ACE,其中正确的是( )
A.①②③B.②④C.①③D.①③④
【答案】D
【解析】
①易证∠CBE=∠DAE,即可求证:△ADE≌△BCE;
②根据①结论可得∠AEC=∠DEB,即可求得∠AED=∠BEG,即可解题;
③证明△AEF≌△BED即可;
④易证△FDC是等腰直角三角形,则CE=EF,S△AEF=S△ACE,由△AEF≌△BED,可知S△BDE=S△ACE,所以S△BDE=S△ACE.
如图延长CE交AD于K,交AB于H.设AD交BE于O.
∵∠ODB=∠OEA,∠AOE=∠DOB,
∴∠OAE=∠OBD,
∵AE=BE,AD=BC,
∴△ADE≌△BCE,故①正确,
∴∠AED=∠BEC,DE=EC,
∴∠AEB=∠DEC=90°,
∴∠ECD=∠ABE=45°,
∵∠AHC=∠ABC+∠HCB=90°+∠EBC>90°,
∴EC不垂直AB,故②错误,
∵∠AEB=∠HED,
∴∠AEK=∠BED,
∵AE=BE,∠KAE=∠EBD,
∴△KAE≌△DBE,
∴BD=AK,
∵△DCK是等腰直角三角形,DE平分∠CDK,
∴EC=EK,
∵EF∥AK,
∴AF=FC,
∴AK=2EF,
∴BD=2EF,故③正确,
∵EK=EC,
∴S△AKE=S△AEC,
∵△KAE△DBE,
∴S△KAE=S△BDE,
∴S△BDE=S△AEC,故④正确.
故选:D.
【题目】从一副52张(没有大小王)的扑克中,每次抽出1张,然后放回洗匀再抽,在实验中得到下列表中部分数据:
实验次数 | 40 | 80 | 120 | 160 | 200 | 240 | 280 | 320 | 360 | 400 |
出现方块的次数 | 11 | 18 | a | 40 | 49 | 63 | 68 | 80 | 91 | 100 |
出现方块的频率 | 27.5% | 22.5% | 25% | 25% | 24.5% | 26.25% | 24.3% | b | 25% | 25% |
(1)填空a= ,b= ;
(2)从上面的图表中可以估计出现方块的概率是 ;
(3)将这幅扑克中的所有方块(即从方块1到方块13,共13张)取出,将它们背面朝上重新洗牌后,从中摸出一张,若摸出的这张牌面数字为奇数,则甲方贏,若摸出的这张牌的牌面数字是偶数,则乙方赢,你认为这个游戏对双方是公平的吗说明理由.
【题目】某水果公司购进10 000kg苹果,公司想知道苹果的损坏率,从所有苹果中随机抽取若干进行统计,部分结果如下表:
苹果总质量n(kg) | 100 | 200 | 300 | 400 | 500 | 1000 |
损坏苹果质量m(kg) | 10.50 | 19.42 | 30.63 | 39.24 | 49.54 | 101.10 |
苹果损坏的频率 (结果保留小数点后三位) | 0.105 | 0.097 | 0.102 | 0.098 | 0.099 | 0.101 |
估计这批苹果损坏的概率为_____(结果保留小数点后一位),损坏的苹果约有______kg.