题目内容
【题目】如图,∠AOB为锐角,在射线OA上依次截取A1A2=A2A3=A3A4=…=AnAn+1,在射线OB上依次截取B1B2=B2B3=B3B4=…=BnBn+1,记Sn为△AnBnBn+1的面积(n为正整数),若S3=7,S4=10,则S2019=( )
A.4039B.4041C.6055D.6058
【答案】C
【解析】
过A3作A3C⊥OB于C,过A4作A4D⊥OB于D,过A2019作A2019E⊥OB于E,则△OA3C∽△OA4D∽△OA2019E,设OA1=a,A1A2=A2A3=A3A4=…=AnAn+1=1个单位,由等底的三角形面积比等于三角形的高之比,得出,即,可得a=,由相似三角形的性质得出,即可求出S2019=6055.
解:过A3作A3C⊥OB于C,过A4作A4D⊥OB于D,过A2019作A2019E⊥OB于E,
则△OA3C∽△OA4D∽△OA2019E,
设OA1=a,A1A2=A2A3=A3A4=…=AnAn+1=1个单位,
∵S3=7,S4=10,B1B2=B2B3=B3B4=…=BnBn+1,
∴,
即,
解得:a=,
∴,
∴,
∴S2019=6055,
故选:C.
【题目】为了丰富同学们的知识,拓展阅读视野,学习图书馆购买了一些科技、文学、历史等书籍,进行组合搭配成、、三种套型书籍,发放给各班级的图书角供同学们阅读,已知各套型的规格与价格如下表:
套型 | 套型 | 套型 | |
规格(本/套) | 12 | 9 | 7 |
价格(元/套) | 200 | 150 | 120 |
(1)已知搭配、两种套型书籍共15套,需购买书籍的花费是2120元,问、两种套型各多少套?
(2)若图书馆用来搭配的书籍共有2100本,现将其搭配成、两种套型书籍,这两种套型的总价为30750元,求搭配后剩余多少本书?
(3)若图书馆用来搭配的书籍共有122本,现将其搭配成、、三种套型书籍共13套,且没有剩余,请求出所有搭配的方案.