题目内容
【题目】如图,在平面直角坐标系中,直线y=0.5x+2与x轴、y轴分别交于A、B两点,以AB为边在第二象限内作正方形ABCD,过点D作DE⊥x轴,垂足为E.
(1)求点A、B的坐标,并求边AB的长;
(2)求点D的坐标;
(3)你能否在x轴上找一点M,使△MDB的周长最小?如果能,请求出M点的坐标;如果不能,说明理由.
【答案】(1)A(-4,0),B(0,2),AB=2;(2)(-6,4);(3)M(-2,0)
【解析】试题分析:(1)、分别令x=0和y=0,求出点B和点A的坐标;(2)、利用△ADE和△AOB全等得出点D的坐标;(3)、作点B关于x轴的对称点F,连接DF与x轴的交点就是点M
试题解析:(1)、当x=0时,y=2;当y=0时,x=-4 ∴A(-4,0) B(0,2)
∴OA=4 OB=2 ∴AB=
(2)、∵ABCD为正方形 ∴AB=AD ∠DAB=90° ∵∠DEA=90°
∴∠EDA+∠DAE=90° ∠DAE+∠BAO=90° ∴∠EDA=∠BAO 又∵∠DEA=∠AOB=90°
∴△ADE≌△BAO ∴DE=A0=4 AE=OB=2 ∴OE=AO+AE=6 ∴点D的坐标为(-6,4)
(3)、作点B关于x轴的对称点F,则点F的坐标为(0,-2)
∴经过点DF的直线解析式为:y=-x-2 当y=0时,x=-2
即点M的坐标为:(-2,0).
【题目】据电力部门统计,每天8:00至21:00是用电的高峰期,简称“峰时”,21:00至次日8:00是用电的低谷时期,简称“谷时”,为了缓解供电需求紧张矛盾,某市电力部门于本月初统一换装“峰谷分时”电表,对用电实行“峰谷分时电价”新政策,具体见下表:
时间 | 换表前 | 换表后 | |
峰时(8:00~21:00) | 谷时(21:00~次日8:00) | ||
电价 | 每度0.52元 | 每度0.55元 | 每度0.30元 |
(1)小张家上月“峰时”用电50度,“谷时”用电20度,若上月初换表,则相对于换表前小张家的电费是增多了还是减少了?增多或减少了多少元?请说明理由.
(2)小张家这个月用电95度,经测算比换表前使用95度电节省了5.9元,问小张家这个月使用“峰时电”和“谷时电”分别是多少度?(12分)
【题目】某商场在促销期间规定:商场内所有商品按标价的80%出售,同时当顾客在该商场消费满一定金额后,按如下方案获得相应金额的奖券:
消费金额a(元)范围 | 200≤a<400 | 400≤a<500 | 500≤a<700 | 700≤a<900 | … |
获得奖券的金额(元) | 30 | 60 | 100 | 130 | … |
根据上述促销方法,顾客在商场内购物可以获得双重优惠。例如,购买标价为450元的商品,则消费金额为元,获得的优惠额为450×(1-80%)+30=120元,设购买该商品得到的优惠率=购买商品获得的优惠额÷商品的标价。
(1)购买一件标价为1000元的商品,顾客得到的优惠率是多少?
(2)对于标价在500元与800元之间(含500元和800元)的商品,顾客购买标价为多少元的商品,可以得到的优惠率?