题目内容
【题目】某商品的进价为每件20元,售价为每件30元,每个月可卖出180件;如果每件商品的售价每上涨1元,则每个月就会少卖出10件,但每件售价不能高于35元,设每件商品的售价上涨x元(x为整数),每个月的销售利润为y元.
(1)求y与x的函数关系式,并直接写出自变量x的取值范围;
(2)每件商品的售价为多少元时,每个月可获得最大利润?最大利润是多少?
(3)每件商品的售价定为多少元时,每个月的利润恰好是1920元?
【答案】(1)y=﹣10x2+80x+1800(0≤x≤5,且x为整数);(2)每件商品的售价为34元时,商品的利润最大,为1960元;(3)售价为32元时,利润为1920元.
【解析】
试题分析:(1)销售利润=每件商品的利润×(180﹣10×上涨的钱数),根据每件售价不能高于35元,可得自变量的取值;
(2)利用公式法结合(1)得到的函数解析式可得二次函数的最值,结合实际意义,求得整数解即可;
(3)让(1)中的y=1920求得合适的x的解即可.
解:(1)y=(30﹣20+x)(180﹣10x)=﹣10x2+80x+1800(0≤x≤5,且x为整数);
(2)由(1)知,y=﹣10x2+80x+1800(0≤x≤5,且x为整数).
∵﹣10<0,
∴当x==4时,y最大=1960元;
∴每件商品的售价为34元.
答:每件商品的售价为34元时,商品的利润最大,为1960元;
(3)1920=﹣10x2+80x+1800
x2﹣8x+12=0,
(x﹣2)(x﹣6)=0,
解得x=2或x=6,
∵0≤x≤5,
∴x=2,
∴30+2=32(元)
∴售价为32元时,利润为1920元.
【题目】某公司欲招聘一名公关人员,对甲、乙两位候选人进行了面试和笔试,他们的成绩如表:
候选人 | 甲 | 乙 | |
测试成绩(百分制) | 面试 | 86 | 92 |
笔试 | 90 | 83 |
如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权。根据两人的平均成绩,公司将录取___.