题目内容
【题目】如图所示,甲、乙两船同时由港口A出发开往海岛B,甲船沿东北方向向海岛B航行,其速度为15海里/小时;乙船速度为20海里/小时,先沿正东方向航行1小时后,到达C港口接旅客,停留半小时后再转向北偏东30°方向开往B岛,其速度仍为20海里/小时.
(1)求港口A到海岛B的距离;
(2)B岛建有一座灯塔,在离灯塔方圆5海里内都可以看见灯塔,问甲、乙两船哪一艘先看到灯塔?
【答案】(1)港口A到海岛B的距离为海里;(2)乙船先看见灯塔.
【解析】
(1)作BD⊥AE于D,构造两个直角三角形并用解直角三角形用BD表示出CD和AD,利用DA和DC之间的关系列出方程求解.
(2)分别求得两船看见灯塔的时间,然后比较即可.
(1)过点B作BD⊥AE于D
在Rt△BCD中,∠BCD=60°,设CD=x,则BD=,BC=2x
在Rt△ABD中,∠BAD=45°
则AD=BD=,AB=BD=
由AC+CD=AD得20+x=
解得:x=10+10
故AB=30+10
答:港口A到海岛B的距离为海里.
(2)甲船看见灯塔所用时间:≈4.1小时
乙船看见灯塔所用时间:小时
所以乙船先看见灯塔.
练习册系列答案
相关题目