题目内容
【题目】如图,A,B两点分别位于一个池塘的两端,由于受条件限制无法直接测量A,B间的距离.小明利用学过的知识,设计了如下三种测量方法,如图①、②、③所示(图中a,b,c表示长度).
(1)请你写出小明设计的三种测量方法中AB的长度:
图①中,AB=______,图②中,AB=______,图③中,AB=______;
(2)请你再设计一种不同于以上三种的测量方法,画出示意图(不要求写画法)
【答案】(1)①①αα;②2c;③b; (2)见解析.
【解析】
(1)①结合解直角三角形即可解答,②根据中位线的性质即可填空,③根据矩形的性质即可填空
(2)结合题中所提供的方法及所学知识确定测量方法,并画出草图即可,方法不唯
解:(1)①αα ;②2c;③b.
(2)本题方法很多,下面列出3种供参考.
方法1:如图1.
方法2:如图2.
方法3:如图3.
【题目】某市将开展演讲比赛活动,某校对参加选拔的学生的成绩按A、B、C、D四个等级进行统计,绘制了如下不完整的统计表和扇形统计图,
成绩等级 | 频数 | 频率 |
A | 4 | n |
B | m | 0.51 |
C | ||
D | 15 |
(1)求m、n的值;
(2)求“C等级”所对应的扇形圆心角的度数;
(3)已知成绩等级为A的4名学生中有1名男生和3名女生,现从中随机挑选2名学生代表学校参加全市比赛,求出恰好选中一男生和一女生的概率
【题目】学习一定要讲究方法,比如有效的预习可大幅提高听课效率.九年级(1)班学习兴趣小组为了了解全校九年级学生的预习情况,对该校九年级学生每天的课前预习时间(单位:)进行了抽样调查.并将抽查得到的数据分成5组,下面是未完成的频数、顿率分布表和频数分布扇形图.
组别 | 课前预习时间 | 频数(人数) | 频率 |
1 | 2 | ||
2 | 0.10 | ||
3 | 16 | 0.32 | |
4 | |||
5 | 3 |
请根据图表中的信息,回答下列问题:
(1)本次调查的样本容量为 ,表中的 , , ;
(2)试计算第4组人数所对应的扇形圆心角的度数;
(3)该校九年级其有1000名学生,请估计这些学生中每天课前预习时间不少于的学生人数.