题目内容
【题目】一辆轿车从甲地驶往乙地,到达乙地后立即返回甲地,速度是原来的1.5倍,往返共用t小时.一辆货车同时从甲地驶往乙地,到达乙地后停止.两车同时出发,匀速行驶,设轿车行驶的时间为x(h),两车离开甲地的距离为y(km),两车行驶过程中y与x之间的函数图象如图所示.
(1)轿车从乙地返回甲地的速度为 km/t,t= h;
(2)求轿车从乙地返回甲地时y与x之间的函数关系式;
(3)当轿车从甲地返回乙地的途中与货车相遇时,求相遇处到甲地的距离.
【答案】(1) 120; ;(2) y=-120x+300; (3) 100km.
【解析】(1)根据图象可得当x=小时时,距甲地的距离是120千米,即可求得轿车从甲地到乙地的速度,进而求得轿车从乙地返回甲地的速度和t的值;
(2)利用待定系数法即可求解;
(3)利用待定系数法求得轿车从乙地到甲地的函数解析式和货车路程和时间的函数解析式,求交点坐标即可.
(1)120;.
(2)设轿车从乙地返回甲地的函数关系式为:y=kx+b.
将(,120)和(,0),两点坐标代入,得 ,
解得: ,
所以轿车从乙地返回甲地时y与x之间的函数关系式为:y=-120x+300;
(3)设货车从甲地驶往乙地的函数关系式为:y=ax 将点(2,120)代入解得,解得a=60,故货车从甲地驶往乙地时y与x之间的函数关系式为:y=60x.
由图象可知当轿车从乙地返回甲地时,两车相遇,路程相等,即-120x+300=60x 解得x=,当x=时,y=100. 故相遇处到甲地的距离为100km
【题目】某市水果批发部门欲将A市的一批水果运往本市销售,有火车和汽车两种运输方式,运输过程中的损耗均为200元/时,其他主要参考数据如下:
运输工具 | 途中平均速度 (千米/时) | 运费 (元/千米) | 装卸费用 (元) |
火车 | 100 | 15 | 2000 |
汽车 | 80 | 20 | 900 |
(1)如果选择汽车的总费用比选择火车的总费用多1100元,那么你知道本市与A市之间的路程是多少千米吗?请你列方程解答;
(2)若A市与某市之间的路程为s千米,且知道火车与汽车在路上耽误的时间分别为2小时和3.1小时,要想将这批水果运往该市进行销售,则当s为多少时,选择火车和汽车运输所需费用相同?