题目内容
【题目】如图,P为正方形ABCD对角线AC上一动点,EF⊥AC且交AD于E,交CD的延长线于点G,连接CE和AG.
(1)求证:△ADG≌△CDE;
(2)当CE平分∠ACD时,求tan∠AGD.
【答案】(1)证明:在正方形ABCD中,AD=CD,∠BAD=∠ADC=90°,
∴∠ADG=180°﹣∠ADC=90°,
∴∠CDE=∠ADG,
又∵EF⊥AC,
∴∠AEF=90°﹣∠CAD=45°,
∴∠DEG=∠AEF=45°,
在Rt△EDG中,∠DGE=90°﹣∠DEG=45°,
∴∠DGE=∠DEG,
∴ED=GD
在△ADG与△CDE中,
,
∴△ADG≌△CDE(SAS);
(2)∵CE平分∠ACD,
∴∠ACE=∠ECG,
又∵EF⊥AC,AD⊥CD,
∴ED=EF,
∴EF=AF=DE=DG,
设DG为k,则ED=k,AE=k,AD=AE+ED=(+1)k,
tan∠AGD==+1
【解析】(1)根据正方形的性质和全等三角形证明△ADG与△CDE全等即可;
(2)设DG为k,利用三角函数的正切值解答即可.
【考点精析】关于本题考查的正方形的性质,需要了解正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形才能得出正确答案.
练习册系列答案
相关题目