题目内容

【题目】如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作DF⊥AC于点F.

(1)判断DF与是⊙O的位置关系,并证明你的结论。
(2)若⊙O的半径为4,∠CDF=22.5°,求阴影部分的面积.

【答案】
(1)相切。证明:如图,连OD,AD,

∵AB是⊙O的直径,∴AD⊥BC,
又∵AB=AC,∴D是BC的中点,
∵OA=OB∴OD是△ABC的中位线,
∴OD∥AC∵DF⊥AC, ∴OD⊥DF,
∴DF是⊙O的切线.
(2)解:∵∠CDF=22.5°,DF⊥AC,∴∠C=67.5°,
∴∠BAC=2∠DAC=45°,
连接OE,则∠BOE=2∠BAC=90°,∴∠AOE=90°,
∴S阴影 ×4×4=4π-8.
【解析】(1)要证与圆有公共点的切线,可连接圆心和公共点,证直线和半径垂直,即OD⊥DF,可利用中位线定理和等腰三角形、直径所对90度圆周角的性质证出;(2)S阴影可转化为扇形面积减去AOE面积,需求圆心角∠BOE度数.
【考点精析】解答此题的关键在于理解切线的判定定理的相关知识,掌握切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线,以及对扇形面积计算公式的理解,了解在圆上,由两条半径和一段弧围成的图形叫做扇形;扇形面积S=π(R2-r2).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网