题目内容
【题目】如图,在△ABC中,将△ABC在平面内绕点A逆时针旋转50角后得到△AB′C′的位置,若此时恰有CC′∥AB,则∠CAB′的度数为( )
A.15°
B.40°
C.50°
D.65°
【答案】A
【解析】∵△ABC绕点A旋转得到△AB′C′,
∴AC=AC′,∠CA C′=∠BAB′=50°
∴∠ACC′= (180°-50°)=65°,
∵CC′∥AB,
∴∠ACC′=∠BAC=65°.
∴∠CAB′=∠BAC-∠BAB′=65°-50°=15°.
故答案为:A.
据两直线平行,内错角相等可得∠ACC′=∠CAB,根据旋转的性质可得AC=AC′,然后利用等腰三角形两底角相等求∠CAC′,再根据∠CAC′、∠BAB′都是旋转角解答.
练习册系列答案
相关题目