题目内容
【题目】小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:3+2,善于思考的小明进行了以下探索:
设a+b(其中a、b、m、n均为整数),
则有:a+b,∴a=m2+2n2,b=2mn,这样小明就找到了一种把类似a+b的式子化为平方式的方法.
请你仿照小明的方法探索并解决下列问题:
(1)当a、b、m、n均为正整数时,若a+b,用含m、n的式子分别表示a、b得:a= ,b= ;
(2)利用所探索的结论,用完全平方式表示出:7+4= .
(3)请化简:.
【答案】(1)m2+3n2,2mn;(2)(2+)2;(3)3- .
【解析】
(1)根据完全平方公式展开,再得出即可;
(2)根据完全平方公式得出即可;
(3)根据(1)即可解答.
解:(1)(m+n)2=m2+3n2+2mn,
∴a=m2+3n2,b=2mn.
故答案为m2+3n2,2mn;
(2)7+4=(2+)2;
故答案为:(2+)2;
(3)∵12﹣6=(3﹣)2,
∴.
【题目】某市居民使用自来水,每户每月水费按如下标准收费:月用水量不超过8立方米,按每立方米a元收取;月用水量超过8立方米但不超过14立方米的部分,按每立方米b元收取;月用水量超过14立方米的部分,按每立方米c元收取.下表是某月部分居民的用水量及缴纳水费的数据.
用水量(立方米) | 2.5 | 15 | 6 | 12 | 10.3 | 4.7 | 9 | 17 | 16 |
水费(元) | 5 | 33.4 | 12 | 25.6 | 21.52 | 9.4 | 18.4 | 39.4 | 36.4 |
(1) ①a= _____,b= _____,c= _____;
②若小明家七月份需缴水费31元,则小明家七月份用水 米3;
(2) 该市某用户两个月共用水30立方米,设该用户在其中一个月用水x立方米,请列式表示这两个月该用户应缴纳的水费.
【题目】有20筐白菜,以每筐为标准,超过和不足的千克数分别用正、负数来表示,记录如下:
与标准质量的差值(单位:) | 0 | 1 | 2.5 | |||
筐数 | 1 | 4 | 2 | 3 | 2 | 8 |
(1)20筐白菜中,最重的一筐比最轻的一筐重 ;
(2)与标准质量比较,20筐白菜总计超过或不足多少千克?
(3)若白菜每千克售价1.68元,则出售这20筐白菜一共可卖多少元?(结果保留整数)