题目内容
【题目】一副直角三角板(其中一个三角板的内角是45°,45°,90°,另一个是30°,60°,90°)
(1)如图①放置,AB⊥AD,∠CAE=_______,BC与AD的位置关系是__________;
(2)在(1)的基础上,再拿一个30°,60°,90°的直角三角板,如图②放置,将AC′边和AD边重合, AE是∠CAB′的角平分线吗,如果是,请加以说明,如果不是,请说明理由.
(3)根据(1)(2)的计算,请解决下列问题:
如图③∠BAD=90°,∠BAC=∠FAD= (是锐角),将一个45°,45°,90°直角三角板的一直角边与AD边重合,锐角顶点A与∠BAD的顶点重合,AE是∠CAF的角平分线吗?如果是,请加以说明,如果不是,请说明理由.
【答案】(1)15°,相互平行;(2)见解析;(3)见解析.
【解析】试题分析:(1)∠CAE=∠BAD-∠BAC-∠EAD=15°,因为AB⊥AD,AB⊥BC,
所以BC与AD相互平行;(2)先计算出∠EAB′=∠EAD-∠B′AC′=15°,由(1)可得∠EAB′=∠CAE,所以AE是∠CAB′的角平分线;(3)分别计算出∠CAE=∠FAE=45°-α,所以AE是∠CAF的角平分线.
试题解析:
(1)∵AB⊥AD,
∴∠BAD=90°,
∴∠CAE=90°-45°-30°=15°,
∵AB⊥AD,AB⊥BC,
∴BC与AD相互平行;
(2)AE是∠CAB′的角平分线.
理由如下:如图②,∵∠EAD=45°,∠B′AC′=30°,
∴∠EAB′=∠EAD-∠B′AC′=15°.
又由(1)知,∠CAE=15°,
∴∠CAE=∠EAB′,即AE是∠CAB′的角平分线;
(3)AE是∠CAF的角平分线.
理由如下:如图③,∵∠EAD=45°,∠BAD=90°,
∴∠BAE=∠DAE=45°,
又∵∠BAC=∠FAD=α,
∴∠BAE-∠BAC=∠DAE-∠FAD,
∴∠CAE=∠FAE,即AE是∠CAF的角平分线.