题目内容
【题目】如图,在矩形ABCD中,AC为对角线,点P为BC边上一动点,连接AP,过点B作BQ⊥AP,垂足为Q,连接CQ.
⑴证明:△ABP∽△BQP;
⑵当点P为BC的中点时,若∠BAC=37°,求∠CQP的度数;
⑶当点P运动到与点C重合时,延长BQ交CD于点F,若AQ=AD,则等于多少.
【答案】(1)证明见解析;(2)∠CQP=53°;(3).
【解析】
(1)根据两角对应相等的两个三角形相似即可判断.
(2)只要证明△CPQ∽△APC,可得∠PQC=∠ACP即可解决问题.
(3)连接AF.与Rt△ADF≌Rt△AQF(HL),推出DF=QF,设AD=AQ=BC=m,DF=FQ=x,FC=y,CQ=a,证明△BCQ∽△CFQ,可得,推出,即=,由CF∥AB,可得,推出,可得,推出x2+xy﹣y2=0,解得或(舍弃),由此即可解决问题.
(1)证明:∵四边形ABCD是矩形,
∴∠ABP=90°,
∵BQ⊥AP,
∴∠BQP=∠ABP=90°,
∵∠BPQ=∠APB,
∴△ABP∽△BQP.
(2)解:∵△ABP∽△BQP,
∴,
∴PB2=PQPA,
∵PB=PC,
∴PC2=PQPA,
∴,
∵∠CPQ=∠APC,
∴△CPQ∽△APC,
∴∠PQC=∠ACP,
∵∠BAC=37°,
∴∠ACB=90°﹣37°=53°,
∴∠CQP=53°.
(3)解:连接AF.
∵∠D=∠AQF=90°,AF=AF,AD=AQ,
∴Rt△ADF≌Rt△AQF(HL),
∴DF=QF,设AD=AQ=BC=m,DF=FQ=x,FC=y,CQ=a,
∵∠BCF=∠CQB=∠CQF=90°,
∴∠BCQ+∠FCQ=90°,∠∠CBQ=90°,
∴∠FCQ=∠CBQ,
∴△BCQ∽△CFQ,
,
,
,
∵CF∥AB,
,
,
,
∴x2+xy﹣y2=0,
∴x=y或y(舍弃),
,
,
故答案是:.