题目内容
【题目】如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E,F为圆心,大于EF长为半径作圆弧,两条圆弧交于点P,作射线AP,交CD于点M。
(1)若∠ACD=114°,求∠MAB的度数;
(2)若CN⊥AM,垂足为N,求证:△ACN≌△MCN。
【答案】(1)33°(2)证明见解析
【解析】(1)解:∵AB∥CD,∴∠ACD+∠CAB=180°。
又∵∠ACD=114°,∴∠CAB=66°。
由作法知,AM是∠ACB的平分线,∴∠AMB=∠CAB=33°。
(2)证明:∵AM平分∠CAB,∴∠CAM=∠MAB,
∵AB∥CD,∴∠MAB=∠CMA。∴∠CAN=∠CMN。
又∵CN⊥AM,∴∠ANC=∠MNC。
在△ACN和△MCN中,
∵∠ANC=∠MNC,∠CAN=∠CMN,CN=CN,∴△ACN≌△MCN(AAS)。
(1)由作法知,AM是∠ACB的平分线,由AB∥CD,根据两直线平行同旁内角互补的性质,得∠CAB=66°,从而求得∠MAB的度数。
(2)要证△ACN≌△MCN,由已知,CN⊥AM即∠ANC=∠MNC=90°;又CN是公共边,故只要再有一边或一角相等即可,考虑到AB∥CD和AM是∠ACB的平分线,有∠CAN=∠MAB =∠CMN。
从而得证。
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目