题目内容
【题目】如图,已知抛物线与x轴交于A(﹣1,0)、B(5,0)两点,与y轴交于点C(0,5).
(1)求该抛物线所对应的函数关系式;
(2)D是笫一象限内抛物线上的一个动点(与点C、B不重合),过点D作DF⊥x轴于点F,交直线BC于点E,连结BD、CD.设点D的横坐标为m,△BCD的面积为S.
①求S关于m的函数关系式及自变量m的取值范围;
②当m为何值时,S有最大值,并求这个最大值;
③直线BC能否把△BDF分成面积之比为2:3的两部分?若能,请求出点D的坐标;若不能,请说明理由.
【答案】
(1)
解:∵抛物线经过A(﹣1,0),B(5,0),C(0,5),
∴设y=a(x+1)(x﹣5),
∴5=a(0+1)(0﹣5),
解得a=﹣1,
∴抛物线的函数关系式为y=﹣(x+1)(x﹣5),
即y=﹣x2+4x+5
(2)
解:①设直线BC的函数关系式为y=kx+b,则
解得 ,
∴y=﹣x+5,
设D(m,﹣m2+4m+5),E(m,﹣m+5),
∴DE=﹣m2+4m+5+m﹣5=﹣m2+5m
∴s= (﹣m2+5m)=﹣ m2+ m (0<m<5);
②s=﹣ m2+ m= ,
∵ ,
∴当m= 时,S有最大值,S最大值= ;
③∵△BDE和△BFE是等高的,
∴它们的面积比=DE:EF,
(ⅰ)当DE:EF=2:3时,
即 ,
解得: (舍),
此时,D( );
(ⅱ)当DE:EF=3:2时,
即 ,
解得: (舍),
此时,D( ).
综上所述,点D的坐标为( )或( )
【解析】(1)由抛物线与x轴的两个交点坐标可设抛物线的解析式为y=a(x+1)(x﹣5),将点C(0,3)代入抛物线解析式中即可得出关于a一元一次方程,解方程即可求出a的值,从而得出抛物线的解析式;(2)①设直线BC的函数解析式为y=kx+b,结合点B、点C的坐标,利用待定系数法求出直线BC的函数解析式,再由点D横坐标为m得出点D、点E的坐标,结合两点间的距离公式以及三角形的面积公式,即可得出结论;②由①的结论,利用配方法将S关于m的函数关系式进行变形,从而得出结论;③结合图象可知△BDE和△BFE是等高的,由此得出它们的面积比=DE:EF,分两种情况考虑,根据两点间的距离公式即可得出关于m的分式方程,解方程即可得出m的值,将其代入到点D的坐标中即可得出结论.
【考点精析】掌握二次函数的图象和二次函数的性质是解答本题的根本,需要知道二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点;增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小.