题目内容

【题目】如图,一边靠墙,其他三边用12米长的篱笆围成一个矩形(ABCD)花圃.

1)如果设花圃靠墙的一边的长为x(米).花圃的面积为y(平方米),求x,y满足的关系式;

2)当长x4米变到6米时,面积y变化如何?

3)当长x6米变到8米时,面积y变化如何?

【答案】1 ;(2)面积y16变为18;(3)面积y18变为16

【解析】

1AD=x,则AB= ,根据矩形面积=×宽,即可得出yx的函数关系式;

2)将x=4x=6代入(1)中的关系式可得y的变化;

3)将x=6x=8代入(1)中的关系式可得y的变化.

解:(1)由题得AD=x,∵ABCD为矩形,

AD=BCCD=AB

又∵AB+BC+CD=12

AB=

y= =

故答案为:y=

2)∵x=4时,代入(1)中关系式y=16

x=6时,代入(1)中关系式y=18

∴当长x4米变到6米时,面积y16变为18

3)∵x=6时,代入(1)中关系式y=18

x=8时,代入(1)中关系式y=16

∴当长x6米变到8米时,面积y18变为16

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网