题目内容
在四边形ABCD中,对角线AC,BD交于点O,点P是在线段BC上任意一点(与点B不重合),∠BPE=∠BCA,PE交BO于点E,过点B作BF⊥PE,垂足为F,交AC于点G.
⑴ 若ABCD为正方形,
① 如图⑴,当点P与点C重合时.△BOG是否可由△POE通过某种图形变换得到?证明你的结论;
② 结合图⑵求的值;
⑵ 如图⑶,若ABCD为菱形,记∠BCA=,请探究并直接写出
的值.(用含
的式子表示)
(1)①△BOG可由△POE绕点O顺时针旋转90°得到
②=
(2)
=
tanα
【解析】
试题分析:⑴ 解:△BOG可由△POE绕点O顺时针旋转90°得到.
证明:如图,∵四边形ABCD是正方形,P与C重合,
∴OB=OP,∠BOC=∠BOG=90°.
∵PF⊥BG,∠PFB=90°,
∴∠GBO=90°-∠BGO,
∠EPO=90°-∠BGO,
∴∠GBO=∠EPO,∴△BOG≌△POE.
∴OE=OG,
又∵∠EOG=90°,
∴将线段OE绕点O顺时针旋转90°就得到OG.
又∵OB=OP,∠POB=90°,
∴将线段OP绕点O顺时针旋转90°就得到OB.
∴△BOG可由△POE绕点O顺时针旋转90°得到.
⑵ 解法一:如图,作PM//AC交BG于M,交BO于N,
∴∠PNE=∠BOC=90°,∠BPN=∠OCB,
∵∠OBC=∠OCB=45°,∴∠NBP=∠NPB,
∴NB=NP.
∵∠MBN=90°-∠BMN, ∠NPE=90°-∠BMN,
∴∠MBN=∠NPE,
∴△BMN≌△PEN,
∴BM=PE.
∵∠BPE=∠ACB,∠BPN=∠ACB,
∴∠BPF=∠MPF.
∵PF⊥BM,∴∠BFP=∠MFP=90°.
又∵PF=PF, ∴△BPF≌△MPF,
∴BF="MF" ,即BF=BM,
∴BF=PE, 即
=
.
解法二:如图,作CM//PF交BG于M,交BO于N,
∴,
且∠BPE=∠BCM,
∵∠BPE=∠ACB,
∴∠BCM=∠GCM,
∵CM//PF,PF⊥BG,∴CM⊥BG,
∴∠CMB=∠CMG=90°.
又∵CM=CM,∴△BCM≌△GCM,
∴BM=MG,即BM=BG,
又由⑴得,BG=CN.
∴.
⑶
如图,过点P作PM∥AC,交BG于M,交BO于N
∴∠BAC=∠BPM=α,又∠BPE=∠BCA,
∴∠MPF=∠BPF,又∵PF⊥BG,PF=PF
∴△BPF≌△MPF
∴MF=BF
∵四边形ABCD是菱形,所以AC⊥BD
∵MP∥AC, ∴MP⊥BD
∴∠MNB=∠ENP
∵∠NEP=∠FEB
又∠FBE+∠FEB=90°=∠NPE+∠NEP
∴∠FBE=∠NPE
∴△BMN∽≌△PEN
∴
∵BM=2BF,在RT△BNP中,又∠BAC=∠BPM=α
∴=tanα
∴=
tanα
考点:菱形的性质、全等三角形、等腰三角形的性质、三角函数、图形变换
点评:几何综合题,中考压轴题种类, 难度系数较大,考查学生对几何综合知识的掌握程度和分析、解决问题的能力。
![](http://thumb.zyjl.cn/images/loading.gif)