题目内容
【题目】如图,CB∥OA,∠B=∠A=100°,E,F在CB上,且满足∠FOC=∠AOC,OE平分∠BOF.
(1)求∠EOC的度数.
(2)若平行移动AC,那么∠OCB∶∠OFB的值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值.
【答案】(1) 40°;(2) 不变, ∠OCB∶∠OFB=1∶2,理由见解析
【解析】(1)由于BC∥OA,∠B=100°,易求∠AOB,而OE、OC都是角平分线,从而可求∠COE;
(2)利用BC∥OA,可知∠AOC=∠BCO,又因为∠AOC=∠COF,所以就有∠FCO=∠FOC,即∠BFO=2∠FCO=2∠OCB,那么∠OCB:∠OFB=1:2;
解:(1)∵CB∥OA,
∴∠BOA+∠B=180°,
∴∠BOA=80°,
∵∠FOC=∠AOC,OE平分∠BOF,
∴∠EOC=∠EOF+∠FOC=∠BOF+∠FOA= (∠BOF+∠FOA)= ×80°=40°;
(2)不变。
∵CB∥OA,
∴∠OCB=∠COA,∠OFB=∠FOA,
∵∠FOC=∠AOC,
∴∠COA=∠FOA,即∠OCB:∠OFB=1:2.
练习册系列答案
相关题目