题目内容
【题目】(1)计算:﹣32+|2﹣5|÷+(﹣2)3×(﹣1)2015
(2)解方程:﹣=3.
(3)解方程:6(x-2)=8x+3.
(4)解方程: x-=2-.
【答案】(1)1(2)x=5(3)x=(4)x=
【解析】
(1)根据有理数的混合运算法则即可求解;
(2)先把分母变成整数,去分母,移项合并,系数化为1即可求解;
(3)去括号,移项合并,系数化为1即可求解;
(4)先去分母,再去括号,移项合并,系数化为1即可求解;
(1)﹣32+|2﹣5|÷+(﹣2)3×(﹣1)2015
=-9+3×+8×1
=-9+2+8
=1
(2)﹣=3.
-=3
5x-10-2x-2=3
3x=15
x=5
(3)6(x-2)=8x+3.
6x-12=8x+3
-2x=15
x=
(4) x-=2-.
6x-3(x-1)=12-(x+2)
6x-3x+3=12-x-2
4x=7
x=
【题目】重庆市的重大惠民工程﹣﹣公租房建设已陆续竣工,计划10年内解决低收入人群的住房问题,前6年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x的关系是y=x+5,(x单位:年,1≤x≤6且x为整数);后4年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x的关系是y=-x+(x单位:年,7≤x≤10且x为整数).假设每年的公租房全部出租完.另外,随着物价上涨等因素的影响,每年的租金也随之上调,预计,第x年投入使用的公租房的租金z(单位:元/m2)与时间x(单位:年,1≤x≤10且x为整数)满足一次函数关系如下表:
z(元/m2) | 50 | 52 | 54 | 56 | 58 | … |
x(年) | 1 | 2 | 3 | 4 | 5 | … |
(1)求出z与x的函数关系式;
(2)求政府在第几年投入的公租房收取的租金最多,最多为多少百万元;
(3)若第6年竣工投入使用的公租房可解决20万人的住房问题,政府计划在第10年投入的公租房总面积不变的情况下,要让人均住房面积比第6年人均住房面积提高a%,这样可解决住房的人数将比第6年减少1.35a%,求a的值.
(参考数据:,,)