题目内容

【题目】如图,在ABCD中,AC为对角线,AC=BC=5,AB=6,AE是ABC的中线.

(1)用无刻度的直尺画出ABC的高CH(保留画图痕迹);

(2)求ACE的面积.

【答案】(1)作图见解析;(2)6

【解析】(1)如图,连接BD,BD与AE交于点F,连接CF并延长到AB,则它与AB的交点即为H.

理由如下:

BD、AC是ABCD的对角线,点O是AC的中点,AE、BO是等腰ABC两腰上的中线,AE=BO,AO=BE,AO=BE,∴△ABO≌△BAE(SSS),∴∠ABO=BAE,ABF中,∵∠FAB=FBA,FA=FB,∵∠BAC=ABC,∴∠EAC=OBC,AC=BC,EAC=OBC,FA=FB,可得AFCBFC(SAS)∴∠ACF=BCF,即CH是等腰ABC顶角平分线,所以CH是ABC的高;

(2)AC=BC=5,AB=6,CHAB,AH=AB=3,CH==4,S△ABC=ABCH=×6×4=12,AE是ABC的中线,S△ACE=S△ABC=6.

练习册系列答案
相关题目

【题目】【问题提出】

用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?

【问题探究】

不妨假设能搭成m种不同的等腰三角形,为探究m与n之间的关系,我们可以先从特殊入手,通过试验、观察、类比、最后归纳、猜测得出结论.

【探究一】

(1)用3根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?

此时,显然能搭成一种等腰三角形.

所以,当n=3时,m=1.

(2)用4根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?

只可分成1根木棒、1根木棒和2根木棒这一种情况,不能搭成三角形.

所以,当n=4时,m=0.

(3)用5根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?

若分成1根木棒、1根木棒和3根木棒,则不能搭成三角形.

若分成2根木棒、2根木棒和1根木棒,则能搭成一种等腰三角形.

所以,当n=5时,m=1.

(4)用6根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?

若分成1根木棒、1根木棒和4根木棒,则不能搭成三角形.

若分成2根木棒、2根木棒和2根木棒,则能搭成一种等腰三角形.

所以,当n=6时,m=1.

综上所述,可得:表①

【探究二】

(1)用7根相同的木棒搭一个三角形,能搭成多少种不同的三角形?

(仿照上述探究方法,写出解答过程,并将结果填在表②中)

(2)用8根、9根、10根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?

(只需把结果填在表②中)

表②

你不妨分别用11根、12根、13根、14根相同的木棒继续进行探究,…

【问题解决】:

用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(设n分别等于4k﹣1,4k,4k+1,4k+2,其中k是正整数,把结果填在表③中)

表③

【问题应用】:

用2016根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(写出解答过程),其中面积最大的等腰三角形每腰用了 根木棒.(只填结果)

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网