题目内容
【题目】如图,△ABC为等边三角形,点D、E分别在AC、AB上,且AD=BE,连接BD、CE交于点P,在△ABC外部作∠ABF=∠ABD,过点A作AF⊥BF于点F,若∠ADB=∠ABF+90°,BF﹣AF=3,则BP=_____.
【答案】3﹣
【解析】
如图,在FB上取一点G,使得FG=FA,作GF⊥AB于F,在FB上取一点H,使得GH=HB,连接GH,在FB上取一点K,使得∠BAK=45°,连接AK.证明△CBE≌△BAD(SAS),推出∠ABE=∠BCE,推出∠DPC=∠PCB+∠PBC=∠PBC+∠ABD=60°,由∠ADB=∠ABF+90°=∠DCB+∠DBC=60°+60°﹣∠BCP=120°﹣∠ABF,可得∠ABF=15°,解直角三角形求出AK,再证明BP=AK即可解决问题.
解:如图,在FB上取一点G,使得FG=FA,作GT⊥AB于T,在FB上取一点H,使得GH=HB,连接GH,在FB上取一点K,使得∠BAK=45°,连接AK.
∵△ABC是等边三角形,
∴AB=BC=AC,
∠CBE=∠BAD=60°,
∵AD=BE,
∴△CBE≌△BAD(SAS),
∴∠ABE=∠BCE,
∴∠DPC=∠PCB+∠PBC=∠PBC+∠ABD=60°
∵∠ADB=∠ABF+90°=∠DCB+∠DBC=60°+60°﹣∠BCP=120°﹣∠ABF,
∴∠ABF=15°,
∵HG=HB,
∴∠HGB=∠HBG=15°,
∴∠GHT=∠HGB+∠HBG=30°,设GT=a,则GH=BH=2a,TH=a,
∵BF﹣AF=3,FA=FG,
∴BG=3,
在Rt△BGT中,∵BG2=GT2+BT2,
∴a2+(2a+a)2=9,
解得a=,
∴TG=,AG=2TG=,
∴AF=FG=,
∴AK=,
∵∠BCP=∠ABK,BC=BA,∠CBP=45°=∠BAK,
∴△BCP≌△BAK(ASA),
∴BP=CK=3﹣.
故答案为:3﹣;