题目内容
如图,C为线段AE上一动点(不与点A、E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BC相交于点P,BE与CD相交于点Q,连接PQ.
求证:△PCQ为等边三角形.
求证:△PCQ为等边三角形.
分析:由C为线段AE上一动点(不与点A、E重合),在AE同侧分别作等边△ABC和等边△CDE,利用SAS易证得△ACD≌△BCE,继而可证得△ACP≌△BCQ,则可得CP=CQ,又由∠BCD=60°,即可证得:△PCQ为等边三角形.
解答:证明:∵△ABC和△CDE是等边三角形,
∴AC=BC,CD=CE,∠ACB=∠DCE=60°,
∴∠BCD=60°,
∴∠ACD=∠BCE,
在△ACD和△BCE中,
,
∴△ACD≌△BCE(SAS),
∴∠CAD=∠CBE,
在△ACP和△BCq中,
,
∴△ACP≌△BCQ(ASA),
∴CP=CQ,
∴△PCQ为等边三角形.
∴AC=BC,CD=CE,∠ACB=∠DCE=60°,
∴∠BCD=60°,
∴∠ACD=∠BCE,
在△ACD和△BCE中,
|
∴△ACD≌△BCE(SAS),
∴∠CAD=∠CBE,
在△ACP和△BCq中,
|
∴△ACP≌△BCQ(ASA),
∴CP=CQ,
∴△PCQ为等边三角形.
点评:此题考查了等边三角形的判定与性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.
练习册系列答案
相关题目