题目内容

(2012•益阳)已知:如图1,在面积为3的正方形ABCD中,E、F分别是BC和CD边上的两点,AE⊥BF于点G,且BE=1.
(1)求证:△ABE≌△BCF;
(2)求出△ABE和△BCF重叠部分(即△BEG)的面积;
(3)现将△ABE绕点A逆时针方向旋转到△AB′E′(如图2),使点E落在CD边上的点E′处,问△ABE在旋转前后与△BCF重叠部分的面积是否发生了变化?请说明理由.
分析:(1)由四边形ABCD是正方形,可得∠ABE=∠BCF=90°,AB=BC,又由AE⊥BF,由同角的余角相等,即可证得∠BAE=∠CBF,然后利用ASA,即可判定:△ABE≌△BCF;
(2)由正方形ABCD的面积等于3,即可求得此正方形的边长,由在△BGE与△ABE中,∠GBE=∠BAE,∠EGB=∠EBA=90°,可证得△BGE∽△ABE,由相似三角形的面积比等于相似比的平方,即可求得答案;
(3)首先由正切函数,求得∠BAE=30°,易证得Rt△ABE≌Rt△AB′E′≌Rt△ADE′,可得AB′与AE在同一直线上,即BF与AB′的交点是G,然后设BF与AE′的交点为H,可证得△BAG≌△HAG,继而证得结论.
解答:(1)证明:∵四边形ABCD是正方形,
∴∠ABE=∠BCF=90°,AB=BC,
∴∠ABF+∠CBF=90°,
∵AE⊥BF,
∴∠ABF+∠BAE=90°,
∴∠BAE=∠CBF,
在△ABE和△BCF中,
∠ABE=∠BCF
AB=BC
∠BAE=∠CBF

∴△ABE≌△BCF.…(4分)

(2)解:∵正方形面积为3,
∴AB=
3
,…(5分)
在△BGE与△ABE中,
∵∠GBE=∠BAE,∠EGB=∠EBA=90°,
∴△BGE∽△ABE,…(7分)
S△BGE
S△ABE
=(
BE
AE
)2

又∵BE=1,
∴AE2=AB2+BE2=3+1=4,
∴S△BGE=
BE2
AE2
×S△ABE=
1
4
×
3
2
=
3
8
.…(8分)

(3)解:没有变化. …(9分)
理由:∵AB=
3
,BE=1,
∴tan∠BAE=
1
3
=
3
3
,∠BAE=30°,…(10分)
∵AB′=AB=AD,∠AB′E′=∠ADE'=90°,AE′公共,
∴Rt△ABE≌Rt△AB′E′≌Rt△ADE′,
∴∠DAE′=∠B′AE′=∠BAE=30°,
∴AB′与AE在同一直线上,即BF与AB′的交点是G,
设BF与AE′的交点为H,
则∠BAG=∠HAG=30°,而∠AGB=∠AGH=90°,AG公共,
∴△BAG≌△HAG,…(11分)
∴S四边形GHE′B′=S△AB′E′-S△AGH=S△ABE-S△ABG=S△BGE
∴△ABE在旋转前后与△BCF重叠部分的面积没有变化.…(12分)
点评:此题考查了相似三角形的判定与性质、正方形的性质、全等三角形的判定与性质以及三角函数等知识.此题综合性较强,难度较大,注意掌握旋转前后图形的对应关系,注意数形结合思想的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网