题目内容
【题目】如图,在平面直角坐标系xOy中,一次函数y=x与二次函数的图象相交于O、A两点,点A(3,3),点M为抛物线的顶点.
(1)求二次函数的表达式;
(2)长度为的线段PQ在线段OA(不包括端点)上滑动,分别过点P、Q作x轴的垂线交抛物线于点P1、Q1,求四边形PQQ1P1面积的最大值;
(3)直线OA上是否存在点E,使得点E关于直线MA的对称点F满足S△AOF=S△AOM?若存在,求出点E的坐标;若不存在,请说明理由.
【答案】(1);(2);(3)E(,).
【解析】
试题分析:(1)把点A(3,3)代入y=x2+bx中,即可解决问题.
(2)设点P在点Q的左下方,过点P作PE⊥QQ1于点E,如图1所示.设点P(m,m)(0<m<1),则Q(m+2,m+2),P1(m,),Q1(m+2,),构建二次函数,利用二次函数性质即可解决问题.
(3)存在,首先证明EF是线段AM的中垂线,利用方程组求交点E坐标即可.
试题解析:(1)把点A(3,3)代入中,得:3=9+3b,解得:b=﹣2,∴二次函数的表达式为.
(2)设点P在点Q的左下方,过点P作PE⊥QQ1于点E,如图1所示.
∵PE⊥QQ1,QQ1⊥x轴,∴PE∥x轴,∵直线OA的解析式为y=kx,∴∠QPE=45°,∴PE=PQ=2.
设点P(m,m)(0<m<1),则Q(m+2,m+2),P1(m,),Q1(m+2,),∴PP1=,QQ1=,∴=(PP1+QQ1)PE==,∴当m=时,取最大值,最大值为.
(3)存在.
如图2中,点E的对称点为F,EF与AM交于点G,连接OM、MF、AF、OF.
∵S△AOF=S△AOM,∴MF∥OA,∵EG=GF,,∴AG=GM,∵M(1,﹣1),A(3,3),∴点G(2,1),∵直线AM解析式为y=2x﹣3,∴线段AM的中垂线EF的解析式为,由,解得,∴点E坐标为(,).