题目内容
【题目】如图,已知AD∥BC,AB⊥BC,AB=3. 点E为射线BC上一个动点,连接AE,将△ABE沿AE折叠,点B落在点B′处,过点B′作AD的垂线,分别交AD,BC于点M,N. 当点B′为线段MN的三等分点时,BE的长为__________________.
【答案】或.
【解析】
试题分析:根据题意可得四边形ABNM是矩形,所以AB=MN=3,AM=BN,根据折叠的性质可得AB=AB’,BE=B’E,点B′为线段MN的三等分点时,分两种情况:①当MB’=1,B’N=2时,在Rt△AMB’中,由勾股定理求得AM=,设BE==B’E=x,在Rt△ENB’中,由勾股定理可得,解得x=;②当MB’=2,B’N=1时,在Rt△AMB’中,由勾股定理求得AM=,设BE==B’E=x,在Rt△ENB’中,由勾股定理可得,解得x=.
练习册系列答案
相关题目
【题目】(本题10分)某商场销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如下表所示:
A | B | |
进价(万元/套) | 1.5 | 1.2 |
售价(万元/套) | 1.65 | 1.4 |
该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元。
(毛利润=(售价 - 进价)×销售量)
(1)该商场计划购进A,B两种品牌的教学设备各多少套?
(2)通过市场调研,该商场决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少数量的1.5倍。若用于购进这两种教学设备的总资金不超过69万元,问A种设备购进数量至多减少多少套?