题目内容
在Rt△ABC中,∠A<∠B,CM是斜边AB上的中线,将△ACM沿直线CM折叠,点A落在点D处,如果CD恰好与AB垂直,那么∠A的度数是( )A.15°
B.30°
C.45°
D.60°
【答案】分析:根据折叠的性质可知,折叠前后的两个三角形全等,则∠D=∠A,∠MCD=∠MCA,再由直角三角形斜边中线的性质可得出∠MCD=∠D,从而求得∠A的度数.
解答:解:在直角△ABC中,CM=AM=MB,(直角三角形的斜边中线等于斜边一半),
∴∠A=∠ACM,
由折叠的性质可得:∠A=∠D,∠MCD=∠MCA,AM=DM,
∴MC=MD,∠A=∠ACM=∠MCE,
∵AB⊥CD,
∴∠CMB=∠DMB,∠CEB=∠MED=90°,
∵∠B+∠A=90°,∠B+∠ECB=90°,
∴∠A=∠ECB,
∴∠A=∠ACM=∠MCE=∠ECB,
∴∠A=
∠ACB=30°,
故选B.
点评:本题考查图形的折叠变化及三角形的内角和定理.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.
解答:解:在直角△ABC中,CM=AM=MB,(直角三角形的斜边中线等于斜边一半),
∴∠A=∠ACM,
由折叠的性质可得:∠A=∠D,∠MCD=∠MCA,AM=DM,
∴MC=MD,∠A=∠ACM=∠MCE,
∵AB⊥CD,
∴∠CMB=∠DMB,∠CEB=∠MED=90°,
∵∠B+∠A=90°,∠B+∠ECB=90°,
∴∠A=∠ECB,
∴∠A=∠ACM=∠MCE=∠ECB,
∴∠A=
故选B.
点评:本题考查图形的折叠变化及三角形的内角和定理.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.
练习册系列答案
相关题目
在Rt△ABC中,已知a及∠A,则斜边应为( )
| A、asinA | ||
B、
| ||
| C、acosA | ||
D、
|
| A、9:4 | B、9:2 | C、3:4 | D、3:2 |