题目内容

【题目】如图,二次函数y=ax2+bx+c的图象过ABC三点.

1)求出抛物线解析式和顶点坐标;

2)当-2x2时,求函数值y的范围;

3)根据图象回答,当x取何值时,y0

【答案】(1)y=x2-2x-3,顶点坐标为(1,-4);(2)-4y<5;(3)x>3或x<-1.

【解析】

试题分析:(1)根据图象得A(-1,0),B(0,-3),C(4,5),代入y=ax2+bx+c中,解方程组可求a、b、c的值,从而确定顶点坐标;

(2)根据对称轴(顶点)的位置,开口方向,确定当-2<x<2时,y的最大值和最小值;

(3)已知抛物线与x轴交于A(-1,0),对称轴为x=1,可求抛物线与x轴的另一交点坐标,结合开口方向判断当y>0时,x的取值范围.

试题解析:(1)将A(-1,0),B(0,-3),C(4,5)代入y=ax2+bx+c中,得

,解得

抛物线解析式为:y=x2-2x-3,即y=(x-1)2-4,顶点坐标为(1,-4);

(2)对称轴x=1,开口向上,

当-2<x<2时,y有最小值为-4,

x=-2时,对应点离对称轴较远,函数有最大值为5,

-4y<5;

(3)抛物线经过A(-1,0),对称轴为x=1,

抛物线与x轴的另一交点为(3,0),

又抛物线开口向上,

当x>3或x<-1时,y>0.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网