题目内容
【题目】已知,如图,在等腰直角△ABC中,∠C=90°,AC=BC=4,点D是BC上一点,CD=1,点P是AB边上一动点,则PC+PD的最小值是________.
【答案】5
【解析】
过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP,此时DP+CP=DP+PC′=DC′的值最小.由DC=1,BC=4,得到BD=3,连接BC′,由对称性可知∠C′BE=∠CBE=45°,于是得到∠CBC′=90°,然后根据勾股定理即可得到结论.
过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP,
此时DP+CP=DP+PC′=DC′的值最小.
∵DC=1,BC=4,
∴BD=3,
连接BC′,由对称性可知∠C′BE=∠CBE=45°,
∴∠CBC′=90°,
∴BC′⊥BC,∠BCC′=∠BC′C=45°,
∴BC=BC′=4,
根据勾股定理可得DC′==5.
故答案为:5.
练习册系列答案
相关题目