题目内容
【题目】数学活动课上,老师准备了若干个如图1的三种纸片,种纸片边长为的正方形,中纸片是边长为的正方形,种纸片是长为、宽为的长方形.并用种纸片一张,种纸片一张,种纸片两张拼成如图2的大正方形.
(1)请问两种不同的方法求图2大正方形的面积.
方法1:____________________;方法2:________________________;
(2)观察图2,请你写出下列三个代数式:之间的等量关系.
_______________________________________________________;
(3)根据(2)题中的等量关系,解决如下问题:
①已知:,求的值;
②已知,则的值是____.
【答案】(1),;(2);(3)①,②
【解析】
(1)依据正方形的面积计算公式即可得到结论;
(2)依据(1)中的代数式,即可得出(a+b)2,a2+b2,ab之间的等量关系;
(3)①依据a+b=5,可得(a+b)2=25,进而得出a2+b2+2ab=25,再根据a2+b2=11,即可得到ab=7;②设2020-a=x,a-2019=y,即可得到x+y=1,x2+y2=5,依据(x+y)2=x2+2xy+y2,即可得出xy==,进而得到=.
解:(1)图2大正方形的面积=,图2大正方形的面积=
故答案为:,;
(2)由题可得,,之间的等量关系为:故答案为:;
(3)①
②设2020-a=x,a-2019=y,则x+y=1,
∵,
∴x2+y2=5,
∵(x+y)2=x2+2xy+y2,
∴xy==-2,
即.
【题目】甲、乙两名队员的10次射击训练,成绩分别被制成下列两个统计图.
并整理分析数据如下表:
平均成绩/环 | 中位数/环 | 众数/环 | 方差 | |
甲 | 7 | 7 | 1.2 | |
乙 | 7 | 8 |
(1)求,,的值;
(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?