题目内容

精英家教网如图,在△ABC中,点D在边AC上,DB=BC,点E是CD的中点,点F是AB的中点.
(1)求证:EF=
12
AB;
(2)过点A作AG∥EF,交BE的延长线于点G,求证:△ABE≌△AGE.
分析:利用直角三角形斜边上的中线等于斜边的一半从而得到EF=
1
2
AB,根据已知利用SAS来判定△ABE≌△AGE.
解答:精英家教网证明:(1)连接BE,(1分)
∵DB=BC,点E是CD的中点,
∴BE⊥CD.(2分)
∵点F是Rt△ABE中斜边上的中点,
∴EF=
1
2
AB
;(3分)

(2)[方法一]在△ABG中,AF=BF,AG∥EF,
∴EF是△ABG的中位线,
∴BE=EG.(3分)
在△ABE和△AGE中,AE=AE,∠AEB=∠AEG=90°,
∴△ABE≌△AGE;(3分)

[方法二]由(1)得,EF=AF,
∴∠AEF=∠FAE.(1分)
∵EF∥AG,
∴∠AEF=∠EAG.(1分)
∴∠EAF=∠EAG.(1分)
∵AE=AE,∠AEB=∠AEG=90°,
∴△ABE≌△AGE.(3分)
点评:此题主要考查学生对直角三角形的性质及全等三角形的判定方法的掌握情况.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网